
Broadband analysis of microstrip patch antenna
using 3D FDTD - UPML

Srikumar Sandeep
ECEN 5134- Term paper

University of Colorado at Boulder

Abstract – This paper presents the analysis of
microstrip patch antenna using the three dimensional
Finite Difference Time Domain (FDTD) method. The
derivation and implementation of the three
dimensional FDTD method is described. This is done
along with the implementation of an artificial
absorbing boundary medium known as the Uniaxial
Perfectly Matched Layer (UPML). This medium
enables to limit the computational domain required
for simulation. This is followed by the broadband
analysis of a microstrip line fed rectangular patch
antenna using Gaussian pulse excitation. The
broadband analysis is used to estimate the return loss
of the line fed antenna. The results are compared with
the solution obtained from Ansoft planar EM
simulator. Furthermore, the input resistance and
reactance of the antenna near resonance are
estimated.

I .INTRODUCTION

 Microstrip patch antennas are low – profile
antennas that are simple and inexpensive to
manufacture. They are mechanically robust and are
conformable to planar and nonplanar surfaces. One of
the main features of the microstrip antenna is the
extremely narrow frequency bandwidth. Several
methods exist for the analysis of microstrip antennas.
They can be classified as the Transmission Line
Model (TLM), cavity model and full wave models.
Finite Element Method (FEM), FDTD, Integral
Equation – Method of Moment (IE – MoM) are some
of the prominent full wave models. The primary
advantage of FDTD over other full-wave models is
that, FDTD being a time domain method allows
broadband analysis of the antenna by Gaussian pulse
excitation. The antenna characteristics over a wide
frequency range can be obtained by taking the
Fourier transform of the FDTD simulation results
obtained when a wideband Gaussian pulse is used as
an excitation. Moreover, most of widely used
electromagnetic simulation software's use frequency
domain methods like FEM. The disadvantages of the
FDTD are high memory and computational
requirements. Since the computational power will
continue to grow exponentially in the future, this
drawback will become less significant.

 FDTD has received tremendous attention in the
literature recently. FDTD has been used to simulate
and analyze a plethora of electromagnetic problems
ranging from antennas, microwave wave circuits,
electromagnetic compatibility (EMC) issues,
bioelectromagnetics, electromagnetic scattering to
novel materials and nanophotonics [2]. In this paper,
we explore the analysis of microstrip patch antennas
using FDTD. The technique described in this paper
can be used to analyze other planar microwave
circuits such as filters, hybrids, impedance
transformers etc. FDTD analysis of microstrip
antennas can be found in [3] – [5]. But most of these
papers use either Berenger’s PML or Mur Absorbing
Boundary Conditions (ABC) for terminating the
computational domain. In this paper, we use the
UPML as the absorbing boundary to terminate the
computational domain. UPML is superior in
performance to either Berenger’s PML or Mur ABC.

II. FINITE DIFFERENCE TIME DOMAIN (FDTD)
METHOD

 The Finite Difference Time Domain (FDTD)
method is a computational electromagnetic method
that can be used to simulate any electromagnetic
problem. In the FDTD method, Maxwell’s curl
equations are converted to their corresponding scalar
Partial Differential Equations (PDE). This is followed
by the discretization of space and time domain.
Central difference approximations are applied to the
scalar Partial Differential Equations (PDE) with
respect to the discretized time and space domain.
This will result in discrete equations for each field
component, which can be used to evaluate these field
components. These equations are called update
equations or time – stepping equations. The update
equation for a particular field component can be
defined as the discrete equation that expresses the
future value of the same field component using
previous value of the same field component and the
spatial derivatives of other field components at the
present time.

A. Three dimensional FDTD formulation
 One of the most important considerations in FDTD
simulation is that of Absorbing Boundary Conditions

(ABC). In solving electromagnetic wave problems, it
is assumed that geometries of interest are defined in
an open region, i.e. only the geometries of interest are
the scattering objects present. But computational
resources are limited and hence the spatial domain
needs to be truncated in such way that there are no
wave reflections from the boundaries. Such boundary
conditions are called ABCs. The Uniaxial Perfectly
Matched Layer (UPML) is the most efficient of the
ABC’s available in literature [2]. The computational
domain will be surrounded by the UPML, which will
absorb waves of any polarization, angle of incidence
and frequency.
 In FDTD – UPML formulation, the entire spatial
domain is assumed to be an anisotropic medium [2].
Maxwell’s curl equations in the anisotropic medium
can be expressed as follows

∇ × 𝐻𝐻���⃗ = 𝑗𝑗𝑗𝑗𝑗𝑗�̿�𝑠𝐸𝐸��⃗
∇ × 𝐸𝐸��⃗ = −𝑗𝑗𝑗𝑗𝑗𝑗�̿�𝑠𝐻𝐻���⃗ (1)

where 𝐸𝐸��⃗ , 𝐻𝐻���⃗ are the electric and magnetic field
intensity vectors with components in phasor form and
�̿�𝑠 is the diagonal tensor given by (2).

�̿�𝑠 =

⎣
⎢
⎢
⎢
⎡
𝑠𝑠𝑦𝑦 𝑠𝑠𝑧𝑧
𝑠𝑠𝑥𝑥

0 0

0 𝑠𝑠𝑥𝑥𝑠𝑠𝑧𝑧
𝑠𝑠𝑦𝑦

0

0 0 𝑠𝑠𝑥𝑥𝑠𝑠𝑦𝑦
𝑠𝑠𝑧𝑧 ⎦
⎥
⎥
⎥
⎤

 (2)

In (2), 𝑠𝑠𝑥𝑥 , 𝑠𝑠𝑦𝑦 and 𝑠𝑠𝑧𝑧 are the relative complex
permittivities along x, y and z directions. They are
given by (3).

𝑠𝑠𝑥𝑥 = 𝜅𝜅𝑥𝑥 + 𝜎𝜎𝑥𝑥

𝑗𝑗𝑗𝑗𝑗𝑗

𝑠𝑠𝑦𝑦 = 𝜅𝜅𝑦𝑦 + 𝜎𝜎𝑦𝑦
𝑗𝑗𝑗𝑗𝑗𝑗

𝑠𝑠𝑧𝑧 = 𝜅𝜅𝑧𝑧 + 𝜎𝜎𝑧𝑧
𝑗𝑗𝑗𝑗𝑗𝑗

 (3)

The first equation of (1) is a vector PDE and hence it
can be expanded into three scalar PDEs as below.

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝐻𝐻𝑧𝑧����
𝜕𝜕𝑦𝑦

− 𝜕𝜕𝐻𝐻𝑦𝑦����

𝜕𝜕𝑧𝑧
𝜕𝜕𝐻𝐻𝑥𝑥����
𝜕𝜕𝑧𝑧

− 𝜕𝜕𝐻𝐻𝑧𝑧����
𝜕𝜕𝑥𝑥

𝜕𝜕𝐻𝐻𝑦𝑦����

𝜕𝜕𝑥𝑥
− 𝜕𝜕𝐻𝐻𝑥𝑥����

𝜕𝜕𝑦𝑦 ⎦
⎥
⎥
⎥
⎤

= 𝑗𝑗𝑗𝑗𝑗𝑗

⎣
⎢
⎢
⎢
⎡
𝑠𝑠𝑦𝑦 𝑠𝑠𝑧𝑧
𝑠𝑠𝑥𝑥

0 0

0 𝑠𝑠𝑥𝑥𝑠𝑠𝑧𝑧
𝑠𝑠𝑦𝑦

0

0 0 𝑠𝑠𝑥𝑥𝑠𝑠𝑦𝑦
𝑠𝑠𝑧𝑧 ⎦
⎥
⎥
⎥
⎤

�
𝐸𝐸𝑥𝑥���
𝐸𝐸𝑦𝑦���

𝐸𝐸𝑧𝑧���
� (4)

The electric flux density components are related to
the electric field intensity components as shown in
(5).

𝐷𝐷𝑥𝑥���� = 𝑗𝑗 𝑠𝑠𝑧𝑧
𝑠𝑠𝑥𝑥
𝐸𝐸𝑥𝑥���

𝐷𝐷𝑦𝑦���� = 𝑗𝑗 𝑠𝑠𝑥𝑥
𝑠𝑠𝑦𝑦
𝐸𝐸𝑦𝑦���

𝐷𝐷𝑧𝑧��� = 𝑗𝑗 𝑠𝑠𝑦𝑦
𝑠𝑠𝑧𝑧
𝐸𝐸𝑧𝑧��� (5)

Substituting (5) in (4) results in (6)

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝐻𝐻𝑧𝑧����
𝜕𝜕𝑦𝑦

− 𝜕𝜕𝐻𝐻𝑦𝑦����

𝜕𝜕𝑧𝑧
𝜕𝜕𝐻𝐻𝑥𝑥����
𝜕𝜕𝑧𝑧

− 𝜕𝜕𝐻𝐻𝑧𝑧����
𝜕𝜕𝑥𝑥

𝜕𝜕𝐻𝐻𝑦𝑦����

𝜕𝜕𝑥𝑥
− 𝜕𝜕𝐻𝐻𝑥𝑥����

𝜕𝜕𝑦𝑦 ⎦
⎥
⎥
⎥
⎤

= 𝑗𝑗𝑗𝑗 �
𝑠𝑠𝑦𝑦 0 0
0 𝑠𝑠𝑧𝑧 0
0 0 𝑠𝑠𝑥𝑥

� �
𝐷𝐷𝑥𝑥����
𝐷𝐷𝑦𝑦����

𝐷𝐷𝑧𝑧���
� (6)

The PDEs in (6) are in frequency domain. They are
converted to time domain, by using the
transformation, 𝑗𝑗𝑗𝑗 → 𝜕𝜕

𝜕𝜕𝜕𝜕
. This is followed by

substituting (3) in (6). The resultant time – domain
PDEs relating magnetic field intensity components
and electric flux density components are as follows.

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝐻𝐻𝑧𝑧
𝜕𝜕𝑦𝑦

− 𝜕𝜕𝐻𝐻𝑦𝑦
𝜕𝜕𝑧𝑧

𝜕𝜕𝐻𝐻𝑥𝑥
𝜕𝜕𝑧𝑧

− 𝜕𝜕𝐻𝐻𝑧𝑧
𝜕𝜕𝑥𝑥

𝜕𝜕𝐻𝐻𝑦𝑦
𝜕𝜕𝑥𝑥

− 𝜕𝜕𝐻𝐻𝑥𝑥
𝜕𝜕𝑦𝑦 ⎦
⎥
⎥
⎥
⎤

= 𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝜅𝜅𝑦𝑦 0 0
0 𝜅𝜅𝑧𝑧 0
0 0 𝜅𝜅𝑥𝑥

� �
𝐷𝐷𝑥𝑥
𝐷𝐷𝑦𝑦
𝐷𝐷𝑧𝑧
� +

 1
𝑗𝑗
�
𝜎𝜎𝑦𝑦 0 0
0 𝜎𝜎𝑧𝑧 0
0 0 𝜎𝜎𝑥𝑥

� �
𝐷𝐷𝑥𝑥
𝐷𝐷𝑦𝑦
𝐷𝐷𝑧𝑧
� (7)

The second equation of (1) can be treated similarly
leading to (8).

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝑦𝑦

− 𝜕𝜕𝐸𝐸𝑦𝑦
𝜕𝜕𝑧𝑧

𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝑧𝑧

− 𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝑥𝑥

𝜕𝜕𝐸𝐸𝑦𝑦
𝜕𝜕𝑥𝑥

− 𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝑦𝑦 ⎦
⎥
⎥
⎥
⎤

= − 𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝜅𝜅𝑦𝑦 0 0
0 𝜅𝜅𝑧𝑧 0
0 0 𝜅𝜅𝑥𝑥

� �
𝐵𝐵𝑥𝑥
𝐵𝐵𝑦𝑦
𝐵𝐵𝑧𝑧
� −

 1
𝑗𝑗
�
𝜎𝜎𝑦𝑦 0 0
0 𝜎𝜎𝑧𝑧 0
0 0 𝜎𝜎𝑥𝑥

� �
𝐵𝐵𝑥𝑥
𝐵𝐵𝑦𝑦
𝐵𝐵𝑧𝑧
� (8)

Thus (7) and (8) are time – domain PDEs relating
magnetic field intensity to electric flux density and
electric field intensity to magnetic flux density
respectively. It should be noted that in (7) and (8), the
quantities are in time – domain, and hence they are
represented without bar.
 Using (5), we can derive time – domain PDEs
relating electric field intensity components to electric
flux density components. The first equation of (5) is
expanded as follows.

�𝜅𝜅𝑥𝑥 + 𝜎𝜎𝑥𝑥

𝑗𝑗𝑗𝑗𝑗𝑗
�𝐷𝐷𝑥𝑥���� = 𝑗𝑗 �𝜅𝜅𝑧𝑧 + 𝜎𝜎𝑧𝑧

𝑗𝑗𝑗𝑗𝑗𝑗
� 𝐸𝐸𝑥𝑥��� (9)

Multiplying both sides of (8) by 𝑗𝑗𝑗𝑗 and
transforming to time – domain leads to (10). A
similar treatment of the remaining equations in (5)
will result in (11) and (12).

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜅𝜅𝑥𝑥𝐷𝐷𝑥𝑥) + 𝜎𝜎𝑥𝑥
𝑗𝑗
𝐷𝐷𝑥𝑥 = 𝑗𝑗 � 𝜕𝜕

𝜕𝜕𝜕𝜕
(𝜅𝜅𝑧𝑧𝐸𝐸𝑥𝑥) + 𝜎𝜎𝑧𝑧

𝑗𝑗
𝐸𝐸𝑥𝑥� (10)

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜅𝜅𝑦𝑦𝐷𝐷𝑦𝑦�+ 𝜎𝜎𝑦𝑦

𝑗𝑗
𝐷𝐷𝑦𝑦 = 𝑗𝑗 � 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝜅𝜅𝑥𝑥𝐸𝐸𝑦𝑦� + 𝜎𝜎𝑥𝑥

𝑗𝑗
𝐸𝐸𝑦𝑦�(11)

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜅𝜅𝑧𝑧𝐷𝐷𝑧𝑧) + 𝜎𝜎𝑧𝑧
𝑗𝑗
𝐷𝐷𝑧𝑧 = 𝑗𝑗 � 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝜅𝜅𝑦𝑦𝐸𝐸𝑧𝑧� + 𝜎𝜎𝑦𝑦

𝑗𝑗
𝐸𝐸𝑧𝑧� (12)

Similarly time – domain PDEs relating magnetic field
intensities and flux densities can be derived from
their constitutive relations. They are given by (13),
(14) and (15).

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜅𝜅𝑥𝑥𝐵𝐵𝑥𝑥) + 𝜎𝜎𝑥𝑥
𝑗𝑗
𝐵𝐵𝑥𝑥 = 𝑗𝑗 � 𝜕𝜕

𝜕𝜕𝜕𝜕
(𝜅𝜅𝑧𝑧𝐻𝐻𝑥𝑥) + 𝜎𝜎𝑧𝑧

𝑗𝑗
𝐻𝐻𝑥𝑥� (13)

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜅𝜅𝑦𝑦𝐵𝐵𝑦𝑦�+ 𝜎𝜎𝑦𝑦

𝑗𝑗
𝐵𝐵𝑦𝑦 = 𝑗𝑗 � 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝜅𝜅𝑥𝑥𝐻𝐻𝑦𝑦� + 𝜎𝜎𝑥𝑥

𝑗𝑗
𝐻𝐻𝑦𝑦�(14)

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜅𝜅𝑧𝑧𝐵𝐵𝑧𝑧) + 𝜎𝜎𝑧𝑧
𝑗𝑗
𝐵𝐵𝑧𝑧 = 𝑗𝑗 � 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝜅𝜅𝑦𝑦𝐻𝐻𝑧𝑧� + 𝜎𝜎𝑦𝑦

𝑗𝑗
𝐻𝐻𝑧𝑧� (15)

B. Discretization of space and time domain
 Spatial discretization is done by dividing the
computational space into cuboidal cells called Yee –
cells. The Yee – cell is shown in figure 1.

Figure 1. Electric and magnetic field vector
components in a Yee – cell.

From figure 1, it can be seen that electric field
components are located at Yee – cell edge centers
and magnetic field components are located at face

centers. The computation space is assumed to be
filled with a number of Yee – cells. Each Yee – cell
is identified by the spatial discretization
indices (𝑖𝑖, 𝑗𝑗, 𝑘𝑘). The indices (𝑖𝑖, 𝑗𝑗, 𝑘𝑘) are mapped to the
physical space as per the following relation.

(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) → (𝑖𝑖∆𝑥𝑥, 𝑗𝑗∆𝑦𝑦, 𝑘𝑘∆𝑧𝑧) (16)

where ∆𝑥𝑥,∆𝑦𝑦 and ∆𝑧𝑧 are the dimensions of the Yee –
cell along the x, y and z axis respectively. Temporal
discretization is done by dividing the time axis into
segments of duration ∆𝜕𝜕 each. The temporal
discretization index n corresponds to the real
time, 𝑛𝑛∆𝜕𝜕.
 In order to apply central difference approximations
to the differential equations, the magnetic and electric
field vector components are assigned to the
discrertized space and time domain, in such a way
that they are interleaved in both space and time.
Spatial interleaving can be seen in figure. In order to
have temporal interleaving, electric field / electric
flux components are evaluated at . .𝑛𝑛∆𝜕𝜕, (𝑛𝑛 +
1)∆𝜕𝜕.. and magnetic field / magnetic flux components
are evaluated at
. (𝑛𝑛 − 0.5)∆𝜕𝜕, (𝑛𝑛 + 0.5)∆𝜕𝜕...For convenience we will
use a shorthand notation to represent the field
components at a particular time. Two examples of
this notation are given below.

�𝐸𝐸𝑧𝑧 |𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘+0.5

𝑛𝑛 → 𝐸𝐸𝑧𝑧(𝑖𝑖∆𝑥𝑥, 𝑗𝑗∆𝑦𝑦, 𝑘𝑘∆𝑧𝑧 + 0.5∆𝑧𝑧 ;𝑛𝑛∆𝜕𝜕)
�𝐻𝐻𝑦𝑦 �𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘+0.5

𝑛𝑛+0.5 → 𝐻𝐻𝑦𝑦 (𝑖𝑖∆𝑥𝑥 + 0.5∆𝑥𝑥, 𝑗𝑗∆𝑦𝑦, 𝑘𝑘∆𝑧𝑧 +
0.5∆𝑧𝑧 ;𝑛𝑛∆𝜕𝜕 + 0.5∆𝜕𝜕) (17)

C. Derivation of FDTD update equations
 The three dimensional FDTD is implemented
using 12 update equations. They are for
𝐷𝐷𝑥𝑥 ,𝐷𝐷𝑦𝑦 ,𝐷𝐷𝑧𝑧 ,𝐸𝐸𝑥𝑥 ,𝐸𝐸𝑦𝑦 ,𝐸𝐸𝑧𝑧 ,𝐵𝐵𝑥𝑥 ,𝐵𝐵𝑦𝑦 ,𝐵𝐵𝑧𝑧 ,𝐻𝐻𝑥𝑥 ,𝐻𝐻𝑦𝑦 ,𝐻𝐻𝑧𝑧 . In this
section, the derivation of update equations for 𝐷𝐷𝑥𝑥 and
𝐸𝐸𝑥𝑥 are shown. The rest of the equations can be
derived in the same way. The figure 1 and the
shorthand notation in (17), should be used to
understand the derivation of these update equations.
 The starting point for the derivation of update
equations are the continuous time PDEs given by (7),
(8), (10) – (12), (13) – (15). The equations (7), (8)
are used for the derivation of electric and magnetic
flux density update equations respectively. (10) –
(12), (13) – (15) are used for the derivation of
electric and magnetic field intensity update equations.
In order to derive 𝐷𝐷𝑥𝑥 update equation, we use the first
row of (7). The first row of (7) is given by (18).

𝜕𝜕𝐻𝐻𝑧𝑧
𝜕𝜕𝑦𝑦

− 𝜕𝜕𝐻𝐻𝑦𝑦
𝜕𝜕𝑧𝑧

= 𝜅𝜅𝑦𝑦
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐷𝐷𝑥𝑥) + 𝜎𝜎𝑦𝑦
𝑗𝑗
𝐷𝐷𝑥𝑥 (18)

From (18), it is obvious that future value of 𝐷𝐷𝑥𝑥 ,
depends on the past value of 𝐷𝐷𝑥𝑥 and the spatial
derivatives of 𝐻𝐻𝑦𝑦 ,𝐻𝐻𝑧𝑧 at the current time. The 𝐷𝐷𝑥𝑥
update equation will be used to evaluate, the future
value of 𝐷𝐷𝑥𝑥 , i.e. 𝐷𝐷𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘

𝑛𝑛+1 . This will depend on the
previous value of 𝐷𝐷𝑥𝑥 , i.e. 𝐷𝐷𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘

𝑛𝑛 and the spatial
derivatives of 𝐻𝐻𝑧𝑧 ,𝐻𝐻𝑦𝑦 at the current time, i.e. n + 0.5
.The spatial derivatives of 𝐻𝐻𝑧𝑧 , 𝐻𝐻𝑦𝑦 are obtained around
the position of 𝐷𝐷𝑥𝑥 , i.e. the same position of 𝐸𝐸𝑥𝑥 in
figure 1. The spatial derivatives approximated in such
a way using central difference approximation are as
follows.

𝜕𝜕𝐻𝐻𝑧𝑧
𝜕𝜕𝑦𝑦

=
𝐻𝐻𝑧𝑧 |𝑖𝑖+0.5,𝑗𝑗+0.5,𝑘𝑘

𝑛𝑛+0.5 − 𝐻𝐻𝑧𝑧 |𝑖𝑖+0.5,𝑗𝑗−0.5,𝑘𝑘
𝑛𝑛+0.5

∆𝑦𝑦

𝜕𝜕𝐻𝐻𝑦𝑦
𝜕𝜕𝑧𝑧

=
𝐻𝐻𝑦𝑦 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘+0.5

𝑛𝑛+0.5 − 𝐻𝐻𝑦𝑦 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘−0.5
𝑛𝑛+0.5

∆𝑧𝑧
 (19)

In (18), the time derivative of 𝐷𝐷𝑥𝑥 is replaced with the
central difference approximation of the derivative
around current time n + 0.5. This is given by

𝜕𝜕𝐷𝐷𝑥𝑥
𝜕𝜕𝜕𝜕

=
𝐷𝐷𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘

𝑛𝑛+1 − 𝐷𝐷𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘
𝑛𝑛

∆𝜕𝜕
 (20)

The last term on the right hand side of (18), denotes
the value of 𝐷𝐷𝑥𝑥 at the current time, i.e. 𝐷𝐷𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘

𝑛𝑛+0.5 .
Since we evaluate the values of 𝐷𝐷𝑥𝑥 at . .𝑛𝑛∆𝜕𝜕, (𝑛𝑛 +
1)∆𝜕𝜕.., 𝐷𝐷𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘

𝑛𝑛+0.5 is substituted by the following
approximation.

𝐷𝐷𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘
𝑛𝑛+0.5 =

𝐷𝐷𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘
𝑛𝑛 +𝐷𝐷𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘

𝑛𝑛+1

2
 (21)

Substituting (19), (20) and (21) in (18) will result in
the 𝐷𝐷𝑥𝑥 update equation as shown below.

𝐷𝐷𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘

𝑛𝑛+1 = 𝐶𝐶1𝐷𝐷𝑥𝑥.𝐷𝐷𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘
𝑛𝑛 +

𝐶𝐶2𝐷𝐷𝑥𝑥. �
𝐻𝐻𝑧𝑧 |𝑖𝑖+0.5,𝑗𝑗+0.5,𝑘𝑘

𝑛𝑛+0.5 − 𝐻𝐻𝑧𝑧 |𝑖𝑖+0.5,𝑗𝑗−0.5,𝑘𝑘
𝑛𝑛+0.5

∆𝑦𝑦
−

𝐻𝐻𝑦𝑦 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘+0.5

𝑛𝑛+0.5 − 𝐻𝐻𝑦𝑦 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘−0.5
𝑛𝑛+0.5

∆𝑧𝑧
�

𝐶𝐶1𝐷𝐷𝑥𝑥 = �2𝑗𝑗𝜅𝜅𝑦𝑦− 𝜎𝜎𝑦𝑦∆𝜕𝜕
2𝑗𝑗𝜅𝜅𝑦𝑦+ 𝜎𝜎𝑦𝑦∆𝜕𝜕

�

𝐶𝐶2𝐷𝐷𝑥𝑥 = � 2𝑗𝑗∆𝜕𝜕

2𝑗𝑗𝜅𝜅𝑦𝑦+ 𝜎𝜎𝑦𝑦Δ𝜕𝜕
� (22)

Similar to the derivation of 𝐷𝐷𝑥𝑥 update equation,
update equations for 𝐷𝐷𝑦𝑦 ,𝐷𝐷𝑧𝑧 ,𝐵𝐵𝑥𝑥 ,𝐵𝐵𝑦𝑦 and 𝐵𝐵𝑧𝑧 can be
derived.
 In order to derive 𝐸𝐸𝑥𝑥 update equation, (10) is
used. The left hand side of (10) is substituted with

(20) and (21). The right hand side of (10) is
substituted with (23) and (24).

𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝜕𝜕

 =
𝐸𝐸𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘

𝑛𝑛+1 − 𝐸𝐸𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘
𝑛𝑛

∆𝜕𝜕
 (23)

𝐸𝐸𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘
𝑛𝑛+0.5 =

𝐸𝐸𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘
𝑛𝑛 +𝐸𝐸𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘

𝑛𝑛+1

2
 (24)

This will result in 𝐸𝐸𝑥𝑥 update equation as follows.

𝐸𝐸𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘

𝑛𝑛+1 = 𝐶𝐶1𝐸𝐸𝑥𝑥.𝐷𝐷𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘
𝑛𝑛+1 − 𝐶𝐶2𝐸𝐸𝑥𝑥.𝐷𝐷𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘

𝑛𝑛

+ 𝐶𝐶3𝐸𝐸𝑥𝑥.𝐸𝐸𝑥𝑥|𝑖𝑖+0.5,𝑗𝑗,𝑘𝑘
𝑛𝑛

𝐶𝐶1𝐸𝐸𝑥𝑥 = � 2𝑗𝑗𝜅𝜅𝑥𝑥+ 𝜎𝜎𝑥𝑥Δ𝜕𝜕
𝑗𝑗(2𝑗𝑗𝜅𝜅𝑧𝑧+ 𝜎𝜎𝑧𝑧Δ𝜕𝜕)�

𝐶𝐶2𝐸𝐸𝑥𝑥 = � 2𝑗𝑗𝜅𝜅𝑥𝑥− 𝜎𝜎𝑥𝑥Δ𝜕𝜕

𝑗𝑗(2𝑗𝑗𝜅𝜅𝑧𝑧+ 𝜎𝜎𝑧𝑧Δ𝜕𝜕)�

𝐶𝐶2𝐸𝐸𝑥𝑥 = �2𝑗𝑗𝜅𝜅𝑧𝑧− 𝜎𝜎𝑧𝑧Δ𝜕𝜕

2𝑗𝑗𝜅𝜅𝑧𝑧+ 𝜎𝜎𝑧𝑧Δ𝜕𝜕
� (25)

Similar to the derivation of 𝐸𝐸𝑥𝑥 update equation,
update equations for 𝐸𝐸𝑦𝑦 ,𝐸𝐸𝑧𝑧 ,𝐻𝐻𝑥𝑥 ,𝐻𝐻𝑦𝑦 and 𝐻𝐻𝑧𝑧 can be
derived. All the 12 update equations were carefully
derived and are given in appendix I for reference.

D. Computer implementation of FDTD
 FDTD is implemented in software by iterating the
12 update equations given in appendix I. In each
iteration, the flux / field components in the entire
computational space are updated. For instance, the
updating of the components can be in this order, D,
E, B, H. The computational space is divided into two
regions, the inner problem space and the UPML
region surrounding the problem space. The UPML is
terminated by Perfect Electric Conductor (PEC) on
all the six sides. Figure 2, shows the cross – sectional
view of the computational domain in a constant y
plane. The problem space, UPML and PEC boundary
can be seen.
 In figure 2, it should be noted that the UPML
region is divided into different regions. These are the
𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛 , 𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥 , 𝑧𝑧𝑚𝑚𝑖𝑖𝑛𝑛 ,𝑧𝑧𝑚𝑚𝑚𝑚𝑥𝑥 UPML slabs and the corner
regions. A cross – sectional cut of the domain in a
constant z plane will show 𝑦𝑦𝑚𝑚𝑖𝑖𝑛𝑛 ,𝑦𝑦𝑚𝑚𝑚𝑚𝑥𝑥 UPML
regions. Corner UPML regions are the overlap of two
or more UPML slabs. There will be 4 corner regions
near the vertices of the computational domain, where
x, y an z UPML slabs overlap (i.e. overlap of three
UPML regions).
 In FDTD, different materials are modeled by
varying the values of 𝜅𝜅𝑥𝑥 , 𝜅𝜅𝑦𝑦 , 𝜅𝜅𝑧𝑧 ,𝜎𝜎𝑥𝑥 ,𝜎𝜎𝑦𝑦 ,𝜎𝜎𝑧𝑧 . The
computational space will be divided into Yee – cells.
Each Yee – cell will have its corresponding
constitutive parameters. The variations of 𝜅𝜅 and 𝜎𝜎 in

different regions of the computational domain are
given below.
Problem space : Isotropic materials in problem space
are modeled by allowing 𝜅𝜅𝑥𝑥 = 𝜅𝜅𝑦𝑦 = 𝜅𝜅𝑧𝑧 = 1,
𝜎𝜎𝑥𝑥 = 𝜎𝜎𝑦𝑦 = 𝜎𝜎𝑥𝑥 = 𝜎𝜎𝑚𝑚𝑚𝑚𝜕𝜕 , where 𝜎𝜎𝑚𝑚𝑚𝑚𝜕𝜕 is the
conductivity of the material. Furthermore, 𝑗𝑗 in all the
update equations should be multiplied by the 𝑗𝑗𝑟𝑟 of
the corresponding Yee – cell, i.e. the 𝑗𝑗𝑟𝑟 of the
material.
𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛 , 𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥 UPML slabs : 𝜎𝜎𝑦𝑦 = 𝜎𝜎𝑧𝑧 = 0, 𝜅𝜅𝑦𝑦 = 𝜅𝜅𝑧𝑧 =
1. 𝜎𝜎𝑥𝑥 , 𝜅𝜅𝑥𝑥 varies.
𝑦𝑦𝑚𝑚𝑖𝑖𝑛𝑛 ,𝑦𝑦𝑚𝑚𝑚𝑚𝑥𝑥 UPML slabs : 𝜎𝜎𝑥𝑥 = 𝜎𝜎𝑧𝑧 = 0, 𝜅𝜅𝑥𝑥 = 𝜅𝜅𝑧𝑧 =
1. 𝜎𝜎𝑦𝑦 , 𝜅𝜅𝑦𝑦 varies.
𝑧𝑧𝑚𝑚𝑖𝑖𝑛𝑛 , 𝑧𝑧𝑚𝑚𝑚𝑚𝑥𝑥 UPML slabs : 𝜎𝜎𝑥𝑥 = 𝜎𝜎𝑦𝑦 = 0, 𝜅𝜅𝑥𝑥 = 𝜅𝜅𝑦𝑦 =
1. 𝜎𝜎𝑧𝑧 , 𝜅𝜅𝑧𝑧 varies.
Corner UPML regions : Depending on which UPML
slabs are overlapping, a combination of two or more
of the UPML slab conditions should be used. For
instance, when all the UPML slabs overlap in the
corners near the computational space
vertices, 𝜎𝜎𝑥𝑥 ,𝜎𝜎𝑦𝑦 ,𝜎𝜎𝑧𝑧 , 𝜅𝜅𝑥𝑥 , 𝜅𝜅𝑦𝑦 , 𝜅𝜅𝑧𝑧 will vary. For the
corners in figure 2, only 𝜎𝜎𝑦𝑦 ,𝜎𝜎𝑧𝑧 , 𝜅𝜅𝑦𝑦 , 𝜅𝜅𝑧𝑧 varies.

Figure 2. Cross sectional view of the computational
space in a plane parallel to XZ plane.

 In order to obtain gradual attenuation of any wave
incident on the UPML, the parameters 𝜎𝜎 and 𝜅𝜅 are
geometrically graded along the normal axes of the
UPML regions. These normal axis directions of each
UPML slab is shown as arrows in figure 2. The
geometric grading equations are given by

𝜎𝜎𝑥𝑥 ,𝑦𝑦 ,𝑧𝑧(𝑢𝑢) = �𝑔𝑔
1
Δ�

𝑢𝑢
𝜎𝜎0 (26)

𝜅𝜅𝑥𝑥 ,𝑦𝑦 ,𝑧𝑧(𝑢𝑢) = �𝑔𝑔
1
Δ�

𝑢𝑢
 (27)

where u is the normal distance between the point
where the parameter is calculated and the UPML -
problem space boundary. Δ is the spatial
discretization interval, i.e. Δ𝑥𝑥 = Δ𝑦𝑦 = Δ𝑧𝑧 = Δ.
𝑔𝑔,𝜎𝜎𝑜𝑜 are constants. It should be noted that 𝜎𝜎, 𝜅𝜅 are
calculated at the location of the field component. For
instance, 𝜎𝜎, 𝜅𝜅 for the update equations of 𝐻𝐻𝑥𝑥 ,𝐸𝐸𝑧𝑧 of
the same Yee – cell will be different. This is because
the two field components are at different locations in
the same Yee – cell. Since the exterior of the UPML
is a PEC layer, the tangential electric field
components on this surface will be zero. From figure
1, it can be seen that 𝐸𝐸𝑥𝑥 ,𝐸𝐸𝑦𝑦 and 𝐸𝐸𝑧𝑧 on the PEC
surface will be zero. This zero electric field condition
acts as the stopping criterion for the FDTD update
equation loops in software.

E. Precision and stability of FDTD method
 The precision and algorithmic stability of the
FDTD method is governed by the value of Δ𝑥𝑥,Δ𝑦𝑦,Δ𝑧𝑧
and Δ𝜕𝜕. In this paper, we will be using cubical Yee –
cells, so Δ𝑥𝑥 = Δ𝑦𝑦 = Δ𝑧𝑧 = Δ. In order to minimize
dispersive effects, (28) should be satisfied [2].

Δ ≤ 𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛

10
 (28)

where 𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛 is the minimum wavelength
corresponding to the maximum frequency of
simulation. The time discretization interval, Δ𝜕𝜕 is
determined by the Courant condition [2], given by
(29).

Δ𝜕𝜕 ≤ ∆

𝑐𝑐𝑜𝑜√𝑛𝑛
 (29)

where n is the dimension of the FDTD formulation
and 𝑐𝑐𝑜𝑜 is the velocity of light in vacuum. For 3D
simulation, it is usual practice to use, ∆𝜕𝜕 = ∆ 2𝑐𝑐𝑜𝑜⁄ .

III. BROADBAND ANALYSIS USING FDTD

 Three dimensional FDTD with UPML ABC was
implemented in C++. The main objective was to
simulate the rectangular patch antenna shown in
figure 3. The code is given in appendix II. The code
can be used with update equations in appendix I, to
gain a clear understanding. The length of the antenna,
𝐿𝐿 = 16.2 𝑚𝑚𝑚𝑚 and width, 𝑊𝑊 = 12.45 𝑚𝑚𝑚𝑚. The
height of the substrate h = 0.795 mm and substrate
dielectric constant is 2.2. The simulation results can
be used to obtain 𝑆𝑆11(𝑑𝑑𝐵𝐵) vs. frequency of this

 Problem space

z

x

xmax
UPML
slab

 zmax UPML slab

zmin UPML slab

xmin
UPML
slab

Corner

Corner Corner

Corner

PEC boundary
y

antenna. Port 1 is the port represented by the terminal
plane (TP) in figure 3.

Figure 3. Microstrip line fed rectangular patch
antenna (not to scale)

A. FDTD simulation details
 The spatial discretization interval used was ∆ =
0.265 𝑚𝑚𝑚𝑚. Using this interval all the relevant
dimensions of the antenna in figure 3 can be
represented by integer number of cells. By using
(28), it can be seen that this value of ∆ will allow the
use of high excitation frequencies without causing
numerical dispersion. The maximum excitation
frequency can easily be more than 50 GHz. The
temporal discretization interval is calculated using
the Courant condition listed in section II.E. The ∆𝜕𝜕
used for simulation is 0.441 ps.
 The UPML parameters 𝑔𝑔,𝜎𝜎𝑜𝑜 given in (26), (27) are
found after performing several simulations. They are
chosen so that reflection from the problem space –
UPML boundary is very low. The following values
were found suitable: 𝑔𝑔 = 1.4,𝜎𝜎𝑜𝑜 = 0.5. The number
of UPML layers used was 19. Few results of the
UPML experiments are given in Appendix III.
 The size of the problem space was 70 x 150 x 16
cells. Since there are 19 layers of UPML adjoining
each of the six faces of the problem space, the total
size of the computational space is 106 x 186 x 52
cells. From appendix I, it can be seen that there are a
total of 30 update equation coefficients. In addition to
this, there are 12 field / flux components. Therefore
the code needs 42 three dimensional matrices, where
each matrix is of size 106 x 186 x 52. A floating
point number requires 8 bytes of memory for storage.
Hence the total amount of RAM required for the

simulation was around 330 MB. The simulation
environment was Win32 – x86. The microstrip
antenna is modeled by modifying the constitutive
parameters corresponding to the Yee – cells. The
procedure was explained in section II . D. The
conductor used as microstrip and ground plane is
Copper (𝜎𝜎 = 5.8𝑒𝑒7). It should be noted that ground
plane fills the entire computational XY plane and the
substrate fills the entire problem – space XY plane.
The ground plane is one cell thick, while the
substrate is 3 cells thick, i.e 3 cells along the Z
direction.

B. Estimation of 𝑆𝑆11

In this section, the procedure used for estimating
𝑆𝑆11 is outlined. Port 1 is associated with the terminal
plane (TP) in figure 3. 𝑆𝑆11 can be defined as follows.

𝑆𝑆11(𝑓𝑓) = 𝑉𝑉𝑟𝑟𝑒𝑒𝑓𝑓
(𝑓𝑓)

𝑉𝑉𝑖𝑖𝑛𝑛𝑐𝑐 (𝑓𝑓) = 𝐸𝐸𝑟𝑟𝑒𝑒𝑓𝑓
(𝑓𝑓)

𝐸𝐸𝑖𝑖𝑛𝑛𝑐𝑐 (𝑓𝑓) (30)

The estimation of 𝑆𝑆11 consists of two parts. The
objective of the first part is just to sample the incident
wave at the terminal plane. In this part, only the
microstrip feed line is used. The feed line will extend
from 𝑦𝑦 = 0 at one end to 𝑦𝑦 = 𝑦𝑦𝑚𝑚𝑚𝑚𝑥𝑥 at the other
end. At both ends the strip will extend into the
UPML regions and touch the PEC boundary. If the
strip is not extended into UPML, the microstrip
discontinuity will result in reflection. The incident
wave simulation setup is shown in figure 4. In figure
4, it should be noted that the ground plane extends
throughout the XY plane, while the feed line is only 9
cells wide on the XY plane.

 SP
 TP
Figure 4. Incident wave simulation setup

𝑗𝑗𝑟𝑟 = 2.2 0.795 mm

 12.45 mm

 16.2 mm

 2.385 mm

 7.945 mm

TP

 SP

y

 UPML

Substrate

Feed line

Ground plane

x z

z

y x

22 mm

 Since we are interested in the broadband response
of the patch antenna, the excitation source used
should be a broadband pulse. A very narrow
Gaussian pulse will approximate a time domain
impulse function. Therefore the response we obtain
from FDTD will approximate impulse response. The
frequency response can be obtained by taking the
Fourier transform of the response. The excitation
pulse that is used for the simulation is a Gaussian
pulse of the functional form given below.

𝐸𝐸𝑧𝑧(𝜕𝜕) = 𝑒𝑒𝑥𝑥𝑒𝑒−��
𝜕𝜕−𝜕𝜕𝑜𝑜
𝜕𝜕𝑤𝑤

�
2
�
 (31)

The Fourier transform of a time – domain Gaussian
function is Gaussian in functional form. The lower
the value of 𝜕𝜕𝑤𝑤 , larger the frequency bandwidth of the
pulse. The system is excited by adding (31) to all the
𝐸𝐸𝑧𝑧 components under the feed line strip in the source
plane. Source plane is denoted by SP in figures 3 and
4. The SP is placed 4 cells away from the UPML –
problem space boundary. The values used for the
simulation are: 𝜕𝜕𝑜𝑜 = 120∆𝜕𝜕, 𝜕𝜕𝑤𝑤 = 30∆𝜕𝜕. The idea is
to generate a TEM wave under the strip which has a
Gaussian time signature.
 For estimating 𝑆𝑆11 , the incident wave at the
terminal plane (TP) is sampled, after excitation at the
the source plane. TP is located at about 10 cells away
from SP. The transverse field components, i.e.
𝐸𝐸𝑧𝑧 ,𝐻𝐻𝑥𝑥were sampled. It was found that there is
significant distortion in the 𝐸𝐸𝑧𝑧 field. This is because
of the simple source condition that is used. In FDTD,
to generate a plane wave, the Total field / Scattered
field (TF / SF) formulation is used. By using TF / SF
a clean Gaussian plane wave can be generated.
However, 𝐻𝐻𝑥𝑥 sampled at the terminal plane showed
considerably less distortion. The incident wave at TP
is shown in figure 5.

Figure 5. Incident wave at the terminal plane with
only the microstrip feed line.

From figure 5, it can be seen that there is some
distortion after the trailing edge of the Gaussian
pulse. It can be noticed that once pulse has through
the terminal plane, the field is nearly zero. This is
because of the UPML, which will absorb the pulse.
This shows the effectiveness of the UPML.
 In the second part, the simulation model is the
structure shown in figure 3. From figure 3, it can be
seen that the length of the feed line from the UPML –
problem space boundary to the edge of the patch
antenna is 22 cm. The other end of the feed line is
extended into the UPML till it touched PEC
boundary at y = 0. This will make sure that the only
reflection is from that of the patch antenna. The
simulation result is shown in figure 6. By comparing
figure 6 with 5, it can be seen that after 500 time
steps, the incident wave simulation field is nearly
zero. That means the pulse has passed the terminal
plane. On the other hand, from figure 6, it can be
seen that after 500 steps, there is a reflected wave
due to microstrip discontinuities. The reflected wave
will be completely absorbed by the UPML at the y =
0 end of the feed line. After about 3500 time steps,
the terminal plane field settled down to zero. The
reflected wave can be obtained by subtracting the
incident wave from the total wave. This is depicted in
figure 7.
 Since we know the incident and reflected waves at
the terminal plane, 𝑆𝑆11 can be found out as follows.

𝑆𝑆11(𝑓𝑓) = 𝐻𝐻𝑟𝑟𝑒𝑒𝑓𝑓
(𝑓𝑓)

𝐻𝐻𝑖𝑖𝑛𝑛𝑐𝑐 (𝑓𝑓) = 𝐹𝐹𝑇𝑇�𝐻𝐻𝑟𝑟𝑒𝑒𝑓𝑓
(𝜕𝜕)�

𝐹𝐹𝑇𝑇{𝐻𝐻𝑖𝑖𝑛𝑛𝑐𝑐 (𝜕𝜕)} (32)

𝑆𝑆11 (𝑑𝑑𝐵𝐵) can be calculated using (33).

𝑆𝑆11 (𝑑𝑑𝐵𝐵) = 10 log(|𝑆𝑆11|) (33)

Figure 6. Total wave at the terminal plane with the
microstrip patch antenna.

Source distortion

Figure 7. Reflected wave at the terminal plane with
the microstrip patch antenna.

 MATLAB Fast Fourier Transform (FFT) was used
to evaluate (32). Zero padding was used to increase
the frequency resolution. MATLAB code written for
this purpose is given in appendix IV. The estimated
𝑆𝑆11 (𝑑𝑑𝐵𝐵) is plotted against frequency in figure 8. In
order to validate the result obtained by FDTD
simulation, Ansoft planar EM simulator was used to
simulate the patch antenna of figure 3. The 𝑆𝑆11(𝑑𝑑𝐵𝐵)
obtained by this simulation is also shown in figure 7.
It can be seen that there is a reasonable match
between the results, especially the frequencies at
which resonance occurs. A better result can be
obtained if there was no source distortion that is seen
in figure 5. In order to remove this distortion, more
advanced incident source models should be used. In
figure 7, only frequencies above 5 GHz are shown.
This is because of the erroneous results obtained
from FDTD simulation at frequencies below 5 GHz,
which can be attributed to source distortion. Three
dimensional plots of the patch antenna simulation are
given in figure 9.

Figure 8. 𝑆𝑆11(𝑑𝑑𝐵𝐵) vs. frequency (GHz) of the
rectangular patch antenna.

C. Microstrip antenna resonant frequencies
 Cavity model of microstrip antennas can be used
to obtain approximate values of resonant frequencies.
For a microstrip antenna with 𝐿𝐿 > 𝑊𝑊 > ℎ , the
dominant mode is 𝑇𝑇𝑇𝑇010 and its resonant frequency
is given by (34).

(𝑓𝑓𝑟𝑟)010 = 𝑣𝑣𝑜𝑜

2𝐿𝐿√𝑗𝑗𝑟𝑟
 (34)

where 𝑣𝑣𝑜𝑜 is the velocity of light in free space. This
value can be evaluated as (𝑓𝑓𝑟𝑟)010 = 6.25 GHz. This
resonance frequency can be seen in the planar EM
solution result of figure 8. However from figure 7, it
can be noticed that 𝑆𝑆11(𝑑𝑑𝐵𝐵) is not low enough at this
resonant frequency. Hence the operating resonance of
this antenna is the next resonance.
 From figure 8, it can be seen that the operating
resonance of the antenna is about 7.8 GHz. Both the
FDTD and Ansoft planar EM simulation confirms
this. The higher order mode after the dominant mode
is 𝑇𝑇𝑇𝑇020 . The resonant frequency for this mode is
given below.

 (𝑓𝑓𝑟𝑟)020 = 𝑣𝑣𝑜𝑜

2𝑊𝑊√𝑗𝑗𝑟𝑟
 (35)

This value is evaluated as (𝑓𝑓𝑟𝑟)020 = 8.1 GHz. This is
slightly different from the estimated value of 7.8
GHz. This may be because the cavity model which is
used to derive (35) is an approximate model. The
Ansoft simulation and FDTD simulation as full wave
models and gives much more accurate results.
Microstrip antennas resemble dielectric filled
rectangular cavities and hence they exhibit higher
order resonances. These resonant frequencies can be
seen in figure 8 at frequencies higher than 7.8 GHz.

D. Estimation of antenna input impedance around

resonance
In this section, the input impedance of the patch

antenna around resonance is estimated. In the last
section, we estimated the 𝑆𝑆11 at the terminal plane.
Input impedance at the terminal plane is given by
(36).

𝑍𝑍𝑖𝑖𝑛𝑛𝑇𝑇𝑇𝑇 = 𝑍𝑍𝑜𝑜 �

1+ 𝑆𝑆11
1− 𝑆𝑆11

� (36)

where 𝑍𝑍𝑜𝑜 = 50 Ω is the characteristic impedance of
the feed line. The input impedance around the
resonant frequency of 7.8 GHz was estimated. The
input resistance and reactance versus frequency are
shown in figure 10 and 11. From figure 10, it can be
seen that at the resonant frequency of 7.8 GHz, the
 input resistance is about 46 Ω.

 n = 60 n = 100

 n = 200 n = 300

Figure 9 . Microstrip patch antenna simulation : Three dimensional plots of 𝐻𝐻𝑥𝑥 in the computational space at
different times

This is close to feed line characteristic impedance of
50 Ω resulting in low value of 𝑆𝑆11 . From figure 11, it
can be noticed that input reactance at the resonant
frequency is zero. This is typical for resonance.
 Once we know the input impedance at the terminal
plane, the input impedance of the antenna, i.e. the
input impedance at the antenna – feed line junction
can be found out using the transmission line
impedance transformation equation. The antenna
input impedance, 𝑍𝑍𝑖𝑖𝑛𝑛 can be evaluated as follows.

𝑍𝑍𝑖𝑖𝑛𝑛 = 𝑍𝑍𝑜𝑜 �
𝑍𝑍𝑖𝑖𝑛𝑛
𝑇𝑇𝑇𝑇 − 𝑗𝑗𝑍𝑍𝑜𝑜𝜕𝜕𝑚𝑚𝑛𝑛𝑡𝑡𝑡𝑡
𝑍𝑍𝑜𝑜−𝑗𝑗𝑍𝑍𝑖𝑖𝑛𝑛

𝑇𝑇𝑇𝑇 𝜕𝜕𝑚𝑚𝑛𝑛𝑡𝑡𝑡𝑡
� (37)

where 𝑍𝑍𝑜𝑜 is the characteristic impedance of the
microstrip feed line.

Figure 10. Input resistance vs. frequency (GHz) for
the line fed rectangular patch antenna

Figure 11. Input reactance vs. frequency (GHz) for
the line fed rectangular patch antenna.

𝑡𝑡 (𝑟𝑟𝑚𝑚𝑑𝑑

𝑚𝑚
) is the phase constant of the feed line and l is

the distance of the antenna – feed line junction from
the terminal plane, i.e. l = 18.55 mm. For a
microstrip line of width 2.385 mm on a substrate of
thickness h = 0.795 mm and dielectric constant 2.2,
the characteristic impedance 𝑍𝑍𝑜𝑜 = 50.5 Ω. This was
verified using Ansoft designer SV. In order to find
𝑡𝑡, we need to know the phase velocity in the
transmission feed line. To calculate the phase
velocity, the effective dielectric constant of the feed
line, 𝑗𝑗𝑟𝑟𝑒𝑒𝑓𝑓𝑓𝑓 is found out as follows.

𝑗𝑗𝑟𝑟𝑒𝑒𝑓𝑓𝑓𝑓 = �𝑗𝑗𝑟𝑟+ 1

2
�+ �𝑗𝑗𝑟𝑟− 1

2
� 1
�1+12ℎ/𝑊𝑊𝑓𝑓

 (38)

where 𝑗𝑗𝑟𝑟 = 2.2, ℎ = 0.795 mm and 𝑊𝑊𝑓𝑓 = 2.385 mm.
𝑗𝑗𝑟𝑟𝑒𝑒𝑓𝑓𝑓𝑓 was found to be 1.86.
 The phase constant can be calculated as follows.

𝑡𝑡 = 2𝜋𝜋

𝜆𝜆
= 2𝜋𝜋𝑓𝑓

𝑣𝑣𝑒𝑒
 (39)

where 𝑣𝑣𝑒𝑒 is the phase velocity calculated using (40).

𝑣𝑣𝑒𝑒 = 𝑐𝑐

�𝑗𝑗𝑟𝑟𝑒𝑒𝑓𝑓𝑓𝑓
 (40)

Once 𝑡𝑡 for varying frequency is known, it can be
substituted in (37) to estimate antenna input
impedance.

 IV. CONCLUSIONS

 In this paper, we described the three dimensional
FDTD – UPML and used it to perform broadband
analysis of microstrip patch antenna. The results
obtained showed reasonable match with the Ansoft
designer simulated results. Better results can be

easily obtained by using TF / SF for plane wave
generation. The work can be extended to the analysis
of fractal patch antennas such as Minkowski fractal
square patch antennas. Furthermore, radiation
patterns of antennas can be evaluated by using Near
Field – Far Field (NF – FF) transformation.

REFERENCES

[1] C. A. Balanis, Antenna Theory: Analysis and
Design, 3rd Edition, John Wiley & Sons 2005.

[2] A. Taflove and S. Hagness, Computational
Electrodynamics : The Finite – Difference Time
– Domain method, 3rd Edition, Artech House,
Inc., 2005.

[3] C. Wu, K. Wu, Z. Bi and J. Litva, “Accurate
Characterization of Planar Printed Antennas
using Finite – Difference Time – Domain
method, “ IEEE Transactions on Antennas and
Propagation, vol. 40, May 1992.

[4] M. Zweki, R. A. Abd – Alhameed, M. A.
Mangoud, P. S. Excell, and J. A. Vaul, “
Broadband Analysis of Finite Microstrip Patch
Antenna Structure using FDTD ”, 11th
International Conference on Antennas and
Propagation, UMIST, Manchester, UK, April
2001.

[5] D. M. Sheen, S. M. Ali, M. D. Abouzahra and J.
A. Kong, “Application of the Three –
Dimensional Finite – Difference Time – Domain
Method to the Analysis of Planar Microstrip
Circuits”, IEEE Transactions on Microwave
Theory and Techniques, vol. 38, No. 7, July
1990.

Appendix I : 3D FDTD – UPML update equations

1. 𝑫𝑫𝒙𝒙 update equation

 𝐷𝐷𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘
𝑛𝑛+1 = 𝐶𝐶1𝐷𝐷𝑥𝑥.𝐷𝐷𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘

𝑛𝑛 + 𝐶𝐶2𝐷𝐷𝑥𝑥. �
𝐻𝐻𝑧𝑧 |𝑖𝑖+0.5,𝑗𝑗+0.5,𝑘𝑘

𝑛𝑛+0.5 − 𝐻𝐻𝑧𝑧 |𝑖𝑖+0.5,𝑗𝑗−0.5,𝑘𝑘
𝑛𝑛+0.5

∆𝑦𝑦
−

𝐻𝐻𝑦𝑦 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘+0.5
𝑛𝑛+0.5 − 𝐻𝐻𝑦𝑦 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘−0.5

𝑛𝑛+0.5

∆𝑧𝑧
�

 𝐶𝐶1𝐷𝐷𝑥𝑥 = �2𝑗𝑗𝜅𝜅𝑦𝑦− 𝜎𝜎𝑦𝑦∆𝜕𝜕
2𝑗𝑗𝜅𝜅𝑦𝑦+ 𝜎𝜎𝑦𝑦∆𝜕𝜕

� 𝐶𝐶2𝐷𝐷𝑥𝑥 = � 2𝑗𝑗∆𝜕𝜕
2𝑗𝑗𝜅𝜅𝑦𝑦+ 𝜎𝜎𝑦𝑦Δ𝜕𝜕

�

2. 𝑫𝑫𝒚𝒚 update equation

𝐷𝐷𝑦𝑦 |𝑖𝑖 ,𝑗𝑗+0.5,𝑘𝑘
𝑛𝑛+1 = 𝐶𝐶1𝐷𝐷𝑦𝑦.𝐷𝐷𝑦𝑦 |𝑖𝑖 ,𝑗𝑗+0.5,𝑘𝑘

𝑛𝑛 + 𝐶𝐶2𝐷𝐷𝑦𝑦. �
𝐻𝐻𝑥𝑥 |𝑖𝑖 ,𝑗𝑗+0.5,𝑘𝑘+0.5

𝑛𝑛+0.5 − 𝐻𝐻𝑥𝑥 |𝑖𝑖 ,𝑗𝑗+0.5,𝑘𝑘−0.5
𝑛𝑛+0.5

∆𝑧𝑧
−

𝐻𝐻𝑧𝑧 |𝑖𝑖+0.5,𝑗𝑗+0.5,𝑘𝑘
𝑛𝑛+0.5 − 𝐻𝐻𝑧𝑧 |𝑖𝑖−0.5,𝑗𝑗+0.5,𝑘𝑘

𝑛𝑛+0.5

∆𝑥𝑥
�

𝐶𝐶1𝐷𝐷𝑦𝑦 = �2𝑗𝑗𝜅𝜅𝑧𝑧− 𝜎𝜎𝑧𝑧∆𝜕𝜕
2𝑗𝑗𝜅𝜅𝑧𝑧+ 𝜎𝜎𝑧𝑧∆𝜕𝜕

� 𝐶𝐶2𝐷𝐷𝑦𝑦 = � 2𝑗𝑗∆𝜕𝜕
2𝑗𝑗𝜅𝜅𝑧𝑧+ 𝜎𝜎𝑧𝑧Δ𝜕𝜕

�

3. 𝑫𝑫𝒛𝒛 update equation
𝐷𝐷𝑧𝑧 |𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘+0.5

𝑛𝑛+1 = 𝐶𝐶1𝐷𝐷𝑧𝑧.𝐷𝐷𝑧𝑧 |𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘+0.5
𝑛𝑛 + 𝐶𝐶2𝐷𝐷𝑧𝑧. �

𝐻𝐻𝑦𝑦 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘+0.5
𝑛𝑛+0.5 − 𝐻𝐻𝑦𝑦 |𝑖𝑖−0.5,𝑗𝑗 ,𝑘𝑘+0.5

𝑛𝑛+0.5

∆𝑥𝑥
−

𝐻𝐻𝑥𝑥 |𝑖𝑖 ,𝑗𝑗+0.5,𝑘𝑘+0.5
𝑛𝑛+0.5 − 𝐻𝐻𝑥𝑥 |𝑖𝑖 ,𝑗𝑗−0.5,𝑘𝑘+0.5

𝑛𝑛+0.5

∆𝑦𝑦
�

𝐶𝐶1𝐷𝐷𝑧𝑧 = �2𝑗𝑗𝜅𝜅𝑥𝑥− 𝜎𝜎𝑥𝑥∆𝜕𝜕
2𝑗𝑗𝜅𝜅𝑥𝑥+ 𝜎𝜎𝑥𝑥∆𝜕𝜕

� 𝐶𝐶2𝐷𝐷𝑧𝑧 = � 2𝑗𝑗∆𝜕𝜕
2𝑗𝑗𝜅𝜅𝑥𝑥+ 𝜎𝜎𝑥𝑥Δ𝜕𝜕

�

4. 𝑬𝑬𝒙𝒙 update equation
𝐸𝐸𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘

𝑛𝑛+1 = 𝐶𝐶1𝐸𝐸𝑥𝑥.𝐸𝐸𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘
𝑛𝑛 + 𝐶𝐶2𝐸𝐸𝑥𝑥.𝐷𝐷𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘

𝑛𝑛+1 − 𝐶𝐶3𝐸𝐸𝑥𝑥.𝐷𝐷𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘
𝑛𝑛

𝐶𝐶1𝐸𝐸𝑥𝑥 = �2𝑗𝑗𝜅𝜅𝑧𝑧−𝜎𝜎𝑧𝑧Δ𝜕𝜕
2𝑗𝑗𝜅𝜅𝑧𝑧+𝜎𝜎𝑧𝑧Δ𝜕𝜕

� 𝐶𝐶2𝐸𝐸𝑥𝑥 = � 2𝑗𝑗𝜅𝜅𝑥𝑥+ 𝜎𝜎𝑥𝑥Δ𝜕𝜕
𝑗𝑗(2𝑗𝑗𝜅𝜅𝑧𝑧+ 𝜎𝜎𝑧𝑧Δ𝜕𝜕)

� 𝐶𝐶3𝐸𝐸𝑥𝑥 = � 2𝑗𝑗𝜅𝜅𝑥𝑥− 𝜎𝜎𝑥𝑥Δ𝜕𝜕
𝑗𝑗(2𝑗𝑗𝜅𝜅𝑧𝑧+ 𝜎𝜎𝑧𝑧Δ𝜕𝜕)

�

5. 𝑬𝑬𝒚𝒚 update equation

𝐸𝐸𝑦𝑦 |𝑖𝑖 ,𝑗𝑗+0.5,𝑘𝑘
𝑛𝑛+1 = 𝐶𝐶1𝐸𝐸𝑦𝑦.𝐸𝐸𝑦𝑦 |𝑖𝑖 ,𝑗𝑗+0.5,𝑘𝑘

𝑛𝑛 + 𝐶𝐶2𝐸𝐸𝑦𝑦.𝐷𝐷𝑦𝑦 |𝑖𝑖 ,𝑗𝑗+0.5,𝑘𝑘
𝑛𝑛+1 − 𝐶𝐶3𝐸𝐸𝑦𝑦.𝐷𝐷𝑦𝑦 |𝑖𝑖 ,𝑗𝑗+0.5,𝑘𝑘

𝑛𝑛

𝐶𝐶1𝐸𝐸𝑦𝑦 = �2𝑗𝑗𝜅𝜅𝑥𝑥−𝜎𝜎𝑥𝑥Δ𝜕𝜕
2𝑗𝑗𝜅𝜅𝑥𝑥+𝜎𝜎𝑥𝑥Δ𝜕𝜕

� 𝐶𝐶2𝐸𝐸𝑦𝑦 = � 2𝑗𝑗𝜅𝜅𝑦𝑦+ 𝜎𝜎𝑦𝑦Δ𝜕𝜕
𝑗𝑗(2𝑗𝑗𝜅𝜅𝑥𝑥+ 𝜎𝜎𝑥𝑥Δ𝜕𝜕)

� 𝐶𝐶3𝐸𝐸𝑦𝑦 = � 2𝑗𝑗𝜅𝜅𝑦𝑦− 𝜎𝜎𝑦𝑦Δ𝜕𝜕
𝑗𝑗(2𝑗𝑗𝜅𝜅𝑥𝑥+ 𝜎𝜎𝑥𝑥Δ𝜕𝜕)

�

6. 𝑬𝑬𝒛𝒛 update equation
𝐸𝐸𝑧𝑧 |𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘+0.5

𝑛𝑛+1 = 𝐶𝐶1𝐸𝐸𝑧𝑧.𝐸𝐸𝑧𝑧 |𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘+0.5
𝑛𝑛 + 𝐶𝐶2𝐸𝐸𝑧𝑧.𝐷𝐷𝑧𝑧 |𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘+0.5

𝑛𝑛+1 − 𝐶𝐶3𝐸𝐸𝑧𝑧.𝐷𝐷𝑧𝑧 |𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘+0.5
𝑛𝑛

𝐶𝐶1𝐸𝐸𝑧𝑧 = �2𝑗𝑗𝜅𝜅𝑦𝑦−𝜎𝜎𝑦𝑦Δ𝜕𝜕
2𝑗𝑗𝜅𝜅𝑦𝑦+𝜎𝜎𝑦𝑦Δ𝜕𝜕

� 𝐶𝐶2𝐸𝐸𝑧𝑧 = � 2𝑗𝑗𝜅𝜅𝑧𝑧+ 𝜎𝜎𝑧𝑧Δ𝜕𝜕
𝑗𝑗�2𝑗𝑗𝜅𝜅𝑦𝑦+ 𝜎𝜎𝑦𝑦Δ𝜕𝜕�

� 𝐶𝐶3𝐸𝐸𝑧𝑧 = � 2𝑗𝑗𝜅𝜅𝑧𝑧− 𝜎𝜎𝑧𝑧Δ𝜕𝜕
𝑗𝑗�2𝑗𝑗𝜅𝜅𝑦𝑦+ 𝜎𝜎𝑦𝑦Δ𝜕𝜕�

�

7. 𝑩𝑩𝒙𝒙 update equation
 𝐵𝐵𝑥𝑥 |𝑖𝑖 ,𝑗𝑗+0.5,𝑘𝑘+0.5

𝑛𝑛+1.5 = 𝐶𝐶1𝐵𝐵𝑥𝑥.𝐵𝐵𝑥𝑥 |𝑖𝑖 ,𝑗𝑗+0.5,𝑘𝑘+0.5
𝑛𝑛+0.5 − 𝐶𝐶2𝐵𝐵𝑥𝑥. �

𝐸𝐸𝑧𝑧 |𝑖𝑖 ,𝑗𝑗+1,𝑘𝑘+0.5
𝑛𝑛+1 − 𝐸𝐸𝑧𝑧 |𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘+0.5

𝑛𝑛+1

∆𝑦𝑦
−

𝐸𝐸𝑦𝑦 |𝑖𝑖 ,𝑗𝑗+0.5,𝑘𝑘+1
𝑛𝑛+1 − 𝐸𝐸𝑦𝑦 |𝑖𝑖 ,𝑗𝑗+0.5,𝑘𝑘

𝑛𝑛+1

∆𝑧𝑧
�

 𝐶𝐶1𝐵𝐵𝑥𝑥 = �2𝑗𝑗𝜅𝜅𝑦𝑦− 𝜎𝜎𝑦𝑦∆𝜕𝜕
2𝑗𝑗𝜅𝜅𝑦𝑦+ 𝜎𝜎𝑦𝑦∆𝜕𝜕

� 𝐶𝐶2𝐵𝐵𝑥𝑥 = � 2𝑗𝑗∆𝜕𝜕
2𝑗𝑗𝜅𝜅𝑦𝑦+ 𝜎𝜎𝑦𝑦Δ𝜕𝜕

�

8. 𝑩𝑩𝒚𝒚 update equation

 𝐵𝐵𝑦𝑦 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘+0.5
𝑛𝑛+1.5 = 𝐶𝐶1𝐵𝐵𝑦𝑦.𝐵𝐵𝑦𝑦 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘+0.5

𝑛𝑛+0.5 − 𝐶𝐶2𝐵𝐵𝑦𝑦. �
𝐸𝐸𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘+1

𝑛𝑛+1 − 𝐸𝐸𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘
𝑛𝑛+1

∆𝑧𝑧
−

𝐸𝐸𝑧𝑧 |𝑖𝑖+1,𝑗𝑗 ,𝑘𝑘+0.5
𝑛𝑛+1 − 𝐸𝐸𝑧𝑧 |𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘+0.5

𝑛𝑛+1

∆𝑥𝑥
�

 𝐶𝐶1𝐵𝐵𝑦𝑦 = �2𝑗𝑗𝜅𝜅𝑧𝑧− 𝜎𝜎𝑧𝑧∆𝜕𝜕
2𝑗𝑗𝜅𝜅𝑧𝑧+ 𝜎𝜎𝑧𝑧∆𝜕𝜕

� 𝐶𝐶2𝐵𝐵𝑦𝑦 = � 2𝑗𝑗∆𝜕𝜕
2𝑗𝑗𝜅𝜅𝑧𝑧+ 𝜎𝜎𝑧𝑧Δ𝜕𝜕

�

9. 𝑩𝑩𝒛𝒛 update equation
 𝐵𝐵𝑧𝑧 |𝑖𝑖+0.5,𝑗𝑗+0.5,𝑘𝑘

𝑛𝑛+1.5 = 𝐶𝐶1𝐵𝐵𝑧𝑧.𝐵𝐵𝑧𝑧 |𝑖𝑖+0.5,𝑗𝑗+0.5,𝑘𝑘
𝑛𝑛+0.5 − 𝐶𝐶2𝐵𝐵𝑧𝑧. �

𝐸𝐸𝑦𝑦 |𝑖𝑖+1,𝑗𝑗+0.5,𝑘𝑘
𝑛𝑛+1 − 𝐸𝐸𝑦𝑦 |𝑖𝑖 ,𝑗𝑗+0.5,𝑘𝑘

𝑛𝑛+1

∆𝑥𝑥
−

𝐸𝐸𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗+1,𝑘𝑘
𝑛𝑛+1 − 𝐸𝐸𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘

𝑛𝑛+1

∆𝑦𝑦
�

 𝐶𝐶1𝐵𝐵𝑧𝑧 = �2𝑗𝑗𝜅𝜅𝑥𝑥− 𝜎𝜎𝑥𝑥∆𝜕𝜕
2𝑗𝑗𝜅𝜅𝑥𝑥+ 𝜎𝜎𝑥𝑥∆𝜕𝜕

� 𝐶𝐶2𝐵𝐵𝑧𝑧 = � 2𝑗𝑗∆𝜕𝜕
2𝑗𝑗𝜅𝜅𝑥𝑥+ 𝜎𝜎𝑥𝑥Δ𝜕𝜕

�

10. 𝑯𝑯𝒙𝒙 update equation

𝐻𝐻𝑥𝑥 |𝑖𝑖 ,𝑗𝑗+0.5,𝑘𝑘+0.5
𝑛𝑛+1.5 = 𝐶𝐶1𝐻𝐻𝑥𝑥.𝐻𝐻𝑥𝑥 |𝑖𝑖 ,𝑗𝑗+0.5,𝑘𝑘+0.5

𝑛𝑛+0.5 + 𝐶𝐶2𝐻𝐻𝑥𝑥.𝐵𝐵𝑥𝑥 |𝑖𝑖 ,𝑗𝑗+0.5,𝑘𝑘+0.5
𝑛𝑛+1.5 − 𝐶𝐶3𝐻𝐻𝑥𝑥.𝐵𝐵𝑥𝑥 |𝑖𝑖 ,𝑗𝑗+0.5,𝑘𝑘+0.5

𝑛𝑛+0.5

𝐶𝐶1𝐻𝐻𝑥𝑥 = �2𝑗𝑗𝜅𝜅𝑧𝑧−𝜎𝜎𝑧𝑧Δ𝜕𝜕
2𝑗𝑗𝜅𝜅𝑧𝑧+𝜎𝜎𝑧𝑧Δ𝜕𝜕

� 𝐶𝐶2𝐻𝐻𝑥𝑥 = � 2𝑗𝑗𝜅𝜅𝑥𝑥+ 𝜎𝜎𝑥𝑥Δ𝜕𝜕
𝑗𝑗(2𝑗𝑗𝜅𝜅𝑧𝑧+ 𝜎𝜎𝑧𝑧Δ𝜕𝜕)

� 𝐶𝐶3𝐻𝐻𝑥𝑥 = � 2𝑗𝑗𝜅𝜅𝑥𝑥− 𝜎𝜎𝑥𝑥Δ𝜕𝜕
𝑗𝑗(2𝑗𝑗𝜅𝜅𝑧𝑧+ 𝜎𝜎𝑧𝑧Δ𝜕𝜕)

�

11. 𝑯𝑯𝒚𝒚 update equation

𝐻𝐻𝑦𝑦 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘+0.5
𝑛𝑛+1.5 = 𝐶𝐶1𝐻𝐻𝑦𝑦.𝐻𝐻𝑦𝑦 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘+0.5

𝑛𝑛+0.5 + 𝐶𝐶2𝐻𝐻𝑦𝑦.𝐵𝐵𝑦𝑦 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘+0.5
𝑛𝑛+1.5 − 𝐶𝐶3𝐻𝐻𝑦𝑦.𝐵𝐵𝑦𝑦 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘+0.5

𝑛𝑛+0.5

𝐶𝐶1𝐻𝐻𝑦𝑦 = �2𝑗𝑗𝜅𝜅𝑥𝑥−𝜎𝜎𝑥𝑥Δ𝜕𝜕
2𝑗𝑗𝜅𝜅𝑥𝑥+𝜎𝜎𝑥𝑥Δ𝜕𝜕

� 𝐶𝐶2𝐻𝐻𝑦𝑦 = � 2𝑗𝑗𝜅𝜅𝑦𝑦+ 𝜎𝜎𝑦𝑦Δ𝜕𝜕
𝑗𝑗(2𝑗𝑗𝜅𝜅𝑥𝑥+ 𝜎𝜎𝑥𝑥Δ𝜕𝜕)

� 𝐶𝐶3𝐻𝐻𝑦𝑦 = � 2𝑗𝑗𝜅𝜅𝑦𝑦− 𝜎𝜎𝑦𝑦Δ𝜕𝜕
𝑗𝑗(2𝑗𝑗𝜅𝜅𝑥𝑥+ 𝜎𝜎𝑥𝑥Δ𝜕𝜕)

�

12. 𝑯𝑯𝒛𝒛 update equation
𝐻𝐻𝑧𝑧 |𝑖𝑖+0.5,𝑗𝑗+0.5,𝑘𝑘

𝑛𝑛+1.5 = 𝐶𝐶1𝐻𝐻𝑧𝑧.𝐻𝐻𝑧𝑧 |𝑖𝑖+0.5,𝑗𝑗+0.5,𝑘𝑘
𝑛𝑛+0.5 + 𝐶𝐶2𝐻𝐻𝑧𝑧.𝐵𝐵𝑧𝑧 |𝑖𝑖+0.5,𝑗𝑗+0.5,𝑘𝑘

𝑛𝑛+1.5 − 𝐶𝐶3𝐻𝐻𝑧𝑧.𝐵𝐵𝑧𝑧 |𝑖𝑖+0.5,𝑗𝑗+0.5,𝑘𝑘
𝑛𝑛+0.5

𝐶𝐶1𝐻𝐻𝑧𝑧 = �2𝑗𝑗𝜅𝜅𝑦𝑦−𝜎𝜎𝑦𝑦 Δ𝜕𝜕
2𝑗𝑗𝜅𝜅𝑦𝑦+𝜎𝜎𝑦𝑦 Δ𝜕𝜕

� 𝐶𝐶2𝐻𝐻𝑧𝑧 = � 2𝑗𝑗𝜅𝜅𝑧𝑧+ 𝜎𝜎𝑧𝑧Δ𝜕𝜕
𝑗𝑗�2𝑗𝑗𝜅𝜅𝑦𝑦+ 𝜎𝜎𝑦𝑦Δ𝜕𝜕�

� 𝐶𝐶3𝐻𝐻𝑧𝑧 = � 2𝑗𝑗𝜅𝜅𝑧𝑧− 𝜎𝜎𝑧𝑧Δ𝜕𝜕
𝑗𝑗�2𝑗𝑗𝜅𝜅𝑦𝑦+ 𝜎𝜎𝑦𝑦Δ𝜕𝜕�

�

Appendix II : C++ code for 3D FDTD - UPML simulation of microstrip patch antenna

/* Fdtd3D.cpp : 3D FDTD + UPML
 Author : Srikumar Sandeep

1) E,D vectors on yee cell edge centres and H,B vectors
 on Yee cell face centres.

 Ex[i + 0.5][j][k], Ey[i][j + 0.5][k], Ez[i][j][k + 0.5]
 Dx[i + 0.5][j][k], Dy[i][j + 0.5][k], Dz[i][j][k + 0.5]

Hx[i][j + 0.5][k + 0.5], Hy[i + 0.5][j][k + 0.5], Hz[i + 0.5][j + 0.5][k]
Bx[i][j + 0.5][k + 0.5], By[i + 0.5][j][k + 0.5], Bz[i + 0.5][j + 0.5][k]

2) Constitutive parameter matrices
 epsr [XCELLS] [YCELLS] [ZCELLS]
 sigma[XCELLS] [YCELLS] [ZCELLS]
*/

#include "iostream.h"
#include "math.h"
#include "stdlib.h"
#include "fstream.h"

#define PL 19 //Number of PML layers.
#define PSX 70 //Number of yee cells in problem space along x-direction
#define PSY 150 //Number of yee cells in problem space along y-direction
#define PSZ 16 //Number of yee cells in problem space along z-direction

#define XCELLS PSX + (2 * PL) //Total number of yee cells along x-direction
#define YCELLS PSY + (2 * PL) //Total number of yee cells along y-direction
#define ZCELLS PSZ + (2 * PL) //Total number of yee cells along z-direction

typedef double*** MatPtr; //3D matrix

const double muo = 12.5664e-7;
const double epso = 8.85e-12;
const double CuSigma = 5.8e78;

//Matrices
MatPtr epsr, sigma;
MatPtr Dx,Dy,Dz,Bx,By,Bz,Ex,Ey,Ez,Hx,Hy,Hz;
MatPtr C1Dx,C2Dx,C1Dy,C2Dy,C1Dz,C2Dz;
MatPtr C1Bx,C2Bx,C1By,C2By,C1Bz,C2Bz;
MatPtr C1Ex,C2Ex,C3Ex,C1Ey,C2Ey,C3Ey,C1Ez,C2Ez,C3Ez;
MatPtr C1Hx,C2Hx,C3Hx,C1Hy,C2Hy,C3Hy,C1Hz,C2Hz,C3Hz;

//Function prototypes
void CreateAllMatrices();
void DeleteAllMatrices();
void CreateMatrix(MatPtr&,int dimx,int dimy,int dimz);
void DeleteMatrix(MatPtr, int dimx,int dimy,int dimz);
void FillUpdateEqnConstantMatrices(double g, double sigmao,double dt);

void main()
{
 cout<<"--------------FDTD 3D simulator--------------------\n";

 //T - Number of time steps
 //i,j,k - x,y,z direction yee cell index
 //n - Temporal index
 int T = 5000;

 int i,j,k,n;

 //Text files to write the simulation data
 ofstream Ezfile,Hxfile;
 Ezfile.open("Ezfile.txt");
 Hxfile.open("Hxfile.txt");

 //dx, dy, dz ,dt – Spatial and temporal discretization interval
 double dx,dy,dz,dt;

 //UPML parameters
 double g = 1.4;
 double sigmao = 0.5;

 // Source plane at j = SP
 // Terminal plane at j = TP
 // GP – Ground plane location at k = PL + 1
 int SP = 22;
 int TP = 32;
 int GP = PL + 1;

 //Initiliazation of discretization interval
 dx = 0.000265;
 dy = 0.000265;
 dz = 0.000265;
 dt = dz/(6e8);

 // Create all the 3D matrices and initialize the elements to zero
 // matrices include field / flux components and precomputed update equation
 // coefficients
 CreateAllMatrices();

 //Fill the constitutive parameter matrices
 for(i = 0;i < XCELLS;i++)
 {
 for(j = 0;j < YCELLS;j++)
 {
 for(k = 0;k < ZCELLS;k++)
 {
 epsr [i][j][k] = 1.0;
 sigma[i][j][k] = 0.0;

 //Ground plane at k = 17
 //Ground plane extends throughout the entire XY plane
 if(k == GP && i >= 0 && i < XCELLS && j >= 0 && j < YCELLS)
 {
 sigma[i][j][k] = Cusigma;
 }

 //3 layers of substrate corresponding to substrate
 //thickness = 0.795 mm. The substrate extends in the whole

//XY plane of the problem space. But does not extend into
//UPML

 if((k == GP + 1 || k == GP + 2 || k == GP + 3)
&& i >= PL && i < XCELLS - PL && j >= PL && j <
YCELLS - PL)

 {
 epsr[i][j][k] = 2.2;
 }

 //Feed line width is 9dx
 //Feed line is 8dx offset from the edge of the patch

 //i.e it starts from i = 35
 if(k == GP + 4)
 {
 if(i >= 35 && i <= 43)
 {

//For incident wave simulation : j >=0 && j <=
//YCELLS – 1
//For patch antenna simulation : j >= 0 && j
//<= 102

 if(j >= 0 && j <= 102)
 {
 sigma[i][j][k] = CuSigma;
 }
 }
 }

 //Patch antenna
 if(k == GP + 4)
 {
 //The width of patch = 12.45 mm = 47dx
 if(i >= 27 && i <= 73)
 {
 //The length of patch = 16 mm = 60 dx
 if(j >= 102 && j <= 162)
 {
 sigma[i][j][k] = CuSigma;
 }
 }
 }
 }
 }
 }

 //Precomputer update equation coefficient matrices
 FillUpdateEqnConstantMatrices(g,sigmao,dt);

 //Temp variables to hold previous field values and field differential values.
 double Dxo,Exo,Dyo,Eyo,Dzo,Ezo;
 double dHx,dHy,dHz;
 double Hxo,Hyo,Hzo,Bxo,Byo,Bzo;
 double dEx,dEy,dEz;

 //----------------------FDTD update loop starts here---------------------------
 for(n = 0;n < T;n++)
 {
 //to = 4T
 double temp = -1*(((n*dt - 120*dt)*(n*dt - 120*dt))/(30*30*dt*dt));
 double source = exp(temp);
 double Ezinc = source;

 /*Dx,Ex update
 Dx,Ex[XCELLS][YCELLS + 1][ZCELLS + 1]
 Dx,Ex at j = 0 or j = YCELLS or k = 0 or k = ZCELLS are on the
 PEC surface. So they are zero and need not be calculated.
 */
 for(i = 0;i < XCELLS;i++)
 {
 for(j = 1;j < YCELLS;j++)
 {
 for(k = 1;k < ZCELLS;k++)
 {
 Dxo = Dx[i][j][k];
 Exo = Ex[i][j][k];

 //Dx update equation
 dHz = (Hz[i][j][k] - Hz[i][j - 1][k]) / dy;
 dHy = (Hy[i][j][k] - Hy[i][j][k - 1]) / dz;

 Dx[i][j][k] = C1Dx[i][j][k] * Dxo
 + C2Dx[i][j][k] * (dHz - dHy);

 //Ex update equation
 Ex[i][j][k] = C2Ex[i][j][k] * Dx[i][j][k]
 - C3Ex[i][j][k] * Dxo
 + C1Ex[i][j][k] * Exo;
 }
 }
 }

 /*Dy,Ey update
 Dy,Ey[XCELLS + 1][YCELLS][ZCELLS + 1]
 Dy,Ey at i = 0 or i = XCELLS or k = 0 or k = ZCELLS are on the
 PEC surface. So they are zero and need not be calculated.
 */
 for(i = 1;i < XCELLS;i++)
 {
 for(j = 0;j < YCELLS;j++)
 {
 for(k = 1;k < ZCELLS;k++)
 {
 Dyo = Dy[i][j][k];
 Eyo = Ey[i][j][k];

 //Dy update equation
 dHx = (Hx[i][j][k] - Hx[i][j][k - 1]) / dz;
 dHz = (Hz[i][j][k] - Hz[i - 1][j][k]) / dx;
 Dy[i][j][k] = C1Dy[i][j][k] * Dyo
 + C2Dy[i][j][k] * (dHx - dHz);

 //Ey update equation
 Ey[i][j][k] = C2Ey[i][j][k] * Dy[i][j][k]
 - C3Ey[i][j][k] * Dyo
 + C1Ey[i][j][k] * Eyo;
 }
 }
 }

 //Dz,Ez update
 for(i = 1;i < XCELLS;i++)
 {
 for(j = 1;j < YCELLS;j++)
 {
 for(k = 0;k < ZCELLS;k++)
 {
 Dzo = Dz[i][j][k];
 Ezo = Ez[i][j][k];

 //Dy update equation
 dHx = (Hx[i][j][k] - Hx[i][j - 1][k]) / dy;
 dHy = (Hy[i][j][k] - Hy[i - 1][j][k]) / dx;

 Dz[i][j][k] = C1Dz[i][j][k] * Dzo
 + C2Dz[i][j][k] * (dHy - dHx);

 //Ez update equation
 Ez[i][j][k] = C2Ez[i][j][k] * Dz[i][j][k]

 - C3Ez[i][j][k] * Dzo
 + C1Ez[i][j][k] * Ezo;

//Excitation of the all Ez components under the feed
//line microstrip at j = Source plane
if(j == SP && i >= 35 && i <= 43 && k >= GP + 1 && k

<= GP + 3)
 {
 Ez[i][j][k] += Ezinc;
 }

 }
 }
 }

 //Write simulation data to text file
 Hxfile<<Hx[39][TP][GP + 2]<<"\n";
 Ezfile<<Ez[35][TP][GP + 2]<<"\n";

 //Hx,Bx update
 for(i = 0;i < XCELLS;i++)
 {
 for(int j = 0;j < YCELLS;j++)
 {
 for(int k = 0;k < ZCELLS;k++)
 {
 Hxo = Hx[i][j][k];
 Bxo = Bx[i][j][k];

 dEz = (Ez[i][j + 1][k] - Ez[i][j][k]) / dy;
 dEy = (Ey[i][j][k + 1] - Ey[i][j][k]) / dz;

Bx[i][j][k] = C1Bx[i][j][k] * Bxo - C2Bx[i][j][k] *
(dEz - dEy);
Hx[i][j][k] = C1Hx[i][j][k] * Hxo + C2Hx[i][j][k] *
Bx[i][j][k] - C3Hx[i][j][k] * Bxo;

 }
 }
 }

 //Hy,By update
 for(i = 0;i < XCELLS;i++)
 {
 for(int j = 0;j < YCELLS;j++)
 {
 for(int k = 0;k < ZCELLS;k++)
 {
 Hyo = Hy[i][j][k];
 Byo = By[i][j][k];

 dEx = (Ex[i][j][k + 1] - Ex[i][j][k]) / dz;
 dEz = (Ez[i + 1][j][k] - Ez[i][j][k]) / dx;

By[i][j][k] = C1By[i][j][k] * Byo - C2By[i][j][k] *
(dEx - dEz);
Hy[i][j][k] = C1Hy[i][j][k] * Hyo + C2Hy[i][j][k] *
By[i][j][k] - C3Hy[i][j][k] * Byo;

 }
 }

 }

 //Hz,Bz update
 for(i = 0;i < XCELLS;i++)
 {
 for(int j = 0;j < YCELLS;j++)
 {
 for(int k = 0;k < ZCELLS;k++)
 {
 Hzo = Hz[i][j][k];
 Bzo = Bz[i][j][k];

 dEy = (Ey[i + 1][j][k] - Ey[i][j][k]) / dx;
 dEx = (Ex[i][j + 1][k] - Ex[i][j][k]) / dy;

Bz[i][j][k] = C1Bz[i][j][k] * Bzo - C2Bz[i][j][k] *
(dEy - dEx);
Hz[i][j][k] = C1Hz[i][j][k] * Hzo + C2Hz[i][j][k] *
Bz[i][j][k] - C3Hz[i][j][k] * Bzo;

 }
 }
 }
 }

 DeleteAllMatrices();

 Hxfile.close();
 Ezfile.close();
}

//--
void FillUpdateEqnConstantMatrices(double g, double sigmao, double dt)
{
 double Dx_ky,Dx_sigmay,Dy_kz,Dy_sigmaz,Dz_kx,Dz_sigmax;
 double Bx_ky,Bx_sigmay,By_kz,By_sigmaz,Bz_kx,Bz_sigmax;
 double Ex_kx,Ex_sigmax,Ex_kz,Ex_sigmaz,Ey_ky,Ey_sigmay,
 Ey_kx,Ey_sigmax,Ez_kz,Ez_sigmaz,Ez_ky,Ez_sigmay;
 double Hx_kx,Hx_sigmax,Hx_kz,Hx_sigmaz,Hy_ky,Hy_sigmay,
 Hy_kx,Hy_sigmax,Hz_kz,Hz_sigmaz,Hz_ky,Hz_sigmay;

 //C1Dx,C2Dx,C1Ex,C2Ex,C3Ex
 for(int i = 0;i < XCELLS; i++)
 {
 for(int j = 1;j < YCELLS; j++)
 {
 for(int k = 1;k < ZCELLS; k++)
 {
 Dx_ky = 1;
 Dx_sigmay = sigma[i][j][k];
 Ex_kx = 1;
 Ex_sigmax = sigma[i][j][k];
 Ex_kz = 1;
 Ex_sigmaz = sigma[i][j][k];

 //Dx_ky,Dx_sigmay
 if(j < PL)
 {
 Dx_ky = pow(g,PL - j);
 Dx_sigmay = sigmao * Dx_ky;
 }
 else if (j >= PL + PSY)
 {

 Dx_ky = pow(g,j - PL - PSY);
 Dx_sigmay = sigmao * Dx_ky;
 }

 //Ex_kx, Ex_sigmax
 if(i < PL)
 {
 Ex_kx = pow(g,PL - i - 0.5);
 Ex_sigmax = sigmao * Ex_kx;
 }
 else if(i >= PL + PSX)
 {
 Ex_kx = pow(g,i - PL - PSX + 0.5);
 Ex_sigmax = sigmao * Ex_kx;
 }

 //Ex_kz,Ex_sigmaz
 if(k < PL)
 {
 Ex_kz = pow(g,PL - k);
 Ex_sigmaz = sigmao * Ex_kz;
 }
 else if(k >= PL + PSZ)
 {
 Ex_kz = pow(g,k - PL - PSZ);
 Ex_sigmaz = sigmao * Ex_kz;
 }

 //C1Dx,C2Dx

C1Dx[i][j][k] = (2 * epso * epsr[i][j][k] * Dx_ky -
Dx_sigmay * dt)/(2 * epso * epsr[i][j][k] * Dx_ky +
Dx_sigmay * dt);

C2Dx[i][j][k] = (2 * epso * epsr[i][j][k] * dt) /(2 * epso
* epsr[i][j][k] * Dx_ky + Dx_sigmay * dt);

 //C1Ex,C2Ex,C3Ex,C1Ey,C2Ey,C3Ey,C1Ez,C2Ez,C3Ez

C1Ex[i][j][k] = (2 * epso * epsr[i][j][k] * Ex_kz -
Ex_sigmaz * dt) /(2* epso * epsr[i][j][k] * Ex_kz +
Ex_sigmaz * dt);

C2Ex[i][j][k] = (2 * epso * epsr[i][j][k] * Ex_kx +
Ex_sigmax * dt)/((2 * epso * epsr[i][j][k] * Ex_kz +
Ex_sigmaz * dt)* epso * epsr[i][j][k]);

C3Ex[i][j][k] = (2 * epso * epsr[i][j][k] * Ex_kx -
Ex_sigmax * dt)/((2 * epso * epsr[i][j][k] * Ex_kz +
Ex_sigmaz * dt)* epso * epsr[i][j][k]);

 }
 }
 }

 //C1Dy,C2Dy,C1Ey,C2Ey,C3Ey
 for(i = 1;i < XCELLS; i++)
 {
 for(int j = 0;j < YCELLS; j++)
 {
 for(int k = 1;k < ZCELLS; k++)
 {

 Dy_kz = 1;
 Dy_sigmaz = sigma[i][j][k];
 Ey_ky = 1;

 Ey_sigmay = sigma[i][j][k];
 Ey_kx = 1;
 Ey_sigmax = sigma[i][j][k];

 //Dy_kz,Dy_sigmaz
 if(k < PL)
 {
 Dy_kz = pow(g,PL - k);
 Dy_sigmaz = sigmao * Dy_kz;
 }
 else if (k >= PL + PSZ)
 {
 Dy_kz = pow(g,k - PL - PSZ);
 Dy_sigmaz = sigmao * Dy_kz;
 }

 //Ey_ky, Ey_sigmay
 if(j < PL)
 {
 Ey_ky = pow(g,PL - j - 0.5);
 Ey_sigmay = sigmao * Ey_ky;
 }
 else if(j >= PL + PSY)
 {
 Ey_ky = pow(g,j - PL - PSY + 0.5);
 Ey_sigmay = sigmao * Ey_ky;
 }

 //Ey_kx,Ey_sigmax
 if(i < PL)
 {
 Ey_kx = pow(g,PL - i);
 Ey_sigmax = sigmao * Ey_kx;
 }
 else if(i >= PL + PSX)
 {
 Ey_kx = pow(g,i - PL - PSX);
 Ey_sigmax = sigmao * Ey_kx;
 }

 //C1Dy,C2Dy

C1Dy[i][j][k] = (2 * epso * epsr[i][j][k] * Dy_kz -
Dy_sigmaz * dt)/(2 * epso * epsr[i][j][k] * Dy_kz +
Dy_sigmaz * dt);

C2Dy[i][j][k] = (2 * epso * epsr[i][j][k] * dt) /(2 * epso
* epsr[i][j][k] * Dy_kz + Dy_sigmaz * dt);

 //C1Ey,C2Ey,C3Ey

C1Ey[i][j][k] = (2 * epso * epsr[i][j][k] * Ey_kx -
Ey_sigmax * dt)/(2* epso * epsr[i][j][k] * Ey_kx +
Ey_sigmax * dt);

C2Ey[i][j][k] = (2 * epso * epsr[i][j][k] * Ey_ky +
Ey_sigmay * dt)/((2 * epso * epsr[i][j][k] * Ey_kx +
Ey_sigmax * dt)* epso * epsr[i][j][k]);

C3Ey[i][j][k] = (2 * epso * epsr[i][j][k] * Ey_ky -
Ey_sigmay * dt)/((2 * epso * epsr[i][j][k] * Ey_kx +
Ey_sigmax * dt)* epso * epsr[i][j][k]);

 }
 }

 }

 //C1Dz,C2Dz,C1Ez,C2Ez,C3Ez
 for(i = 1;i < XCELLS; i++)
 {
 for(int j = 1;j < YCELLS; j++)
 {
 for(int k = 0;k < ZCELLS; k++)
 {
 Dz_kx = 1;
 Dz_sigmax = sigma[i][j][k];
 Ez_kz = 1;
 Ez_sigmaz = sigma[i][j][k];
 Ez_ky = 1;
 Ez_sigmay = sigma[i][j][k];

 //Dz_kx,Dz_sigmax
 if(i < PL)
 {
 Dz_kx = pow(g,PL - i);
 Dz_sigmax = sigmao * Dz_kx;
 }
 else if (i >= PL + PSX)
 {
 Dz_kx = pow(g,i - PL - PSX);
 Dz_sigmax = sigmao * Dz_kx;
 }

 //Ez_kz, Ez_sigmaz
 if(k < PL)
 {
 Ez_kz = pow(g,PL - k - 0.5);
 Ez_sigmaz = sigmao * Ez_kz;
 }
 else if(k >= PL + PSZ)
 {
 Ez_kz = pow(g,k - PL - PSZ + 0.5);
 Ez_sigmaz = sigmao * Ez_kz;
 }

 //Ez_ky,Ez_sigmay
 if(j < PL)
 {
 Ez_ky = pow(g,PL - j);
 Ez_sigmay = sigmao * Ez_ky;
 }
 else if(j >= PL + PSY)
 {
 Ez_ky = pow(g,j - PL - PSY);
 Ez_sigmay = sigmao * Ez_ky;
 }

 //C1Dz,C2Dz

C1Dz[i][j][k] = (2 * epso * epsr[i][j][k] * Dz_kx -
Dz_sigmax * dt) /(2 * epso * epsr[i][j][k] * Dz_kx +
Dz_sigmax * dt);

C2Dz[i][j][k] = (2 * epso * epsr[i][j][k] * dt) /(2 * epso
* epsr[i][j][k] * Dz_kx + Dz_sigmax * dt);

 //C1Ez,C2Ez,C3Ez

C1Ez[i][j][k] = (2 * epso * epsr[i][j][k] * Ez_ky -
Ez_sigmay * dt)/(2* epso * epsr[i][j][k] * Ez_ky +
Ez_sigmay * dt);

C2Ez[i][j][k] = (2 * epso * epsr[i][j][k] * Ez_kz +
Ez_sigmaz * dt)/((2 * epso * epsr[i][j][k] * Ez_ky +
Ez_sigmay * dt) * epso * epsr[i][j][k]);

C3Ez[i][j][k] = (2 * epso * epsr[i][j][k] * Ez_kz -
Ez_sigmaz * dt)/((2 * epso * epsr[i][j][k] * Ez_ky +
Ez_sigmay * dt)* epso * epsr[i][j][k]);

 }
 }
 }

 //C1Bx,C2Bx,C1Hx,C2Hx,C3Hx
 for(i = 0;i < XCELLS;i++)
 {
 for(int j = 0;j < YCELLS;j++)
 {
 for(int k = 0;k < ZCELLS;k++)
 {
 Bx_ky = 1;
 Bx_sigmay = sigma[i][j][k];
 Hx_kx = 1;
 Hx_sigmax = sigma[i][j][k];
 Hx_kz = 1;
 Hx_sigmaz = sigma[i][j][k];

 //Bx_ky,Bx_sigmay
 if(j < PL)
 {
 Bx_ky = pow(g,PL - j - 0.5);
 Bx_sigmay = sigmao * Bx_ky;
 }
 else if(j >= PL + PSY)
 {
 Bx_ky = pow(g,j - PL - PSY + 0.5);
 Bx_sigmay = sigmao * Bx_ky;
 }
 //}

 //Hx_kx,Hx_sigmax
 if(i < PL)
 {
 Hx_kx = pow(g,PL - i);
 Hx_sigmax = sigmao * Hx_kx;
 }
 else if(i >= PL + PSX)
 {
 Hx_kx = pow(g,i - PL - PSX);
 Hx_sigmax = sigmao * Hx_kx;
 }

 //Hx_kz,Hx_sigmaz
 if(k < PL)
 {
 Hx_kz = pow(g,PL - k - 0.5);
 Hx_sigmaz = sigmao * Hx_kz;
 }
 else if(k >= PL + PSZ)
 {

 Hx_kz = pow(g,k - PL - PSZ + 0.5);
 Hx_sigmaz = sigmao * Hx_kz;
 }

 //C1Bx,C2Bx,C1By,C2By,C1Bz,C2Bz

C1Bx[i][j][k] = (2 * epso * epsr[i][j][k] * Bx_ky -
Bx_sigmay * dt)/(2 * epso * epsr[i][j][k] * Bx_ky +
Bx_sigmay * dt);

C2Bx[i][j][k] = (2 * epso * epsr[i][j][k] * dt)

 /(2 * epso * epsr[i][j][k] * Bx_ky + Bx_sigmay * dt);

 //C1Hx,C2Hx,C3Hx,C1Hy,C2Hy,C3Hy,C1Hz,C2Hz,C3Hz

C2Hx[i][j][k] = (2 * epso * epsr[i][j][k] * Hx_kx +
Hx_sigmax * dt)/((2 * epso * epsr[i][j][k] * Hx_kz +
Hx_sigmaz * dt)* muo);

C3Hx[i][j][k] = (2 * epso * epsr[i][j][k] * Hx_kx -
Hx_sigmax * dt)/((2 * epso * epsr[i][j][k] * Hx_kz +
Hx_sigmaz * dt)* muo);

C1Hx[i][j][k] = (2 * epso * epsr[i][j][k] * Hx_kz -
Hx_sigmaz * dt) /(2* epso * epsr[i][j][k] * Hx_kz +
Hx_sigmaz * dt);

 }
 }
 }

 //C1By,C2By,C1Hy,C2Hy,C3Hy
 for(i = 0;i < XCELLS;i++)
 {
 for(int j = 0;j < YCELLS;j++)
 {
 for(int k = 0;k < ZCELLS;k++)
 {
 By_kz = 1;
 By_sigmaz = sigma[i][j][k];
 Hy_ky = 1;
 Hy_sigmay = sigma[i][j][k];
 Hy_kx = 1;
 Hy_sigmax = sigma[i][j][k];

 //By_kz,By_sigmaz
 if(k < PL)
 {
 By_kz = pow(g,PL - k - 0.5);
 By_sigmaz = sigmao * By_kz;
 }
 else if(k >= PL + PSZ)
 {
 By_kz = pow(g,k - PL - PSZ + 0.5);
 By_sigmaz = sigmao * By_kz;
 }

 //Hy_ky,Hy_sigmay
 if(j < PL)
 {
 Hy_ky = pow(g,PL - j);
 Hy_sigmay = sigmao * Hy_ky;
 }
 else if(j >= PL + PSY)

 {
 Hy_ky = pow(g,j - PL - PSY);
 Hy_sigmay = sigmao * Hy_ky;
 }
 //}

 //Hy_kx,Hy_sigmax
 if(i < PL)
 {
 Hy_kx = pow(g,PL - i - 0.5);
 Hy_sigmax = sigmao * Hy_kx;
 }
 else if(i >= PL + PSX)
 {
 Hy_kx = pow(g,i - PL - PSX + 0.5);
 Hy_sigmax = sigmao * Hy_kx;
 }

 //C1By,C2By

C1By[i][j][k] = (2 * epso * epsr[i][j][k] * By_kz -
By_sigmaz * dt)/(2 * epso * epsr[i][j][k] * By_kz +
By_sigmaz * dt);

C2By[i][j][k] = (2 * epso * epsr[i][j][k] * dt) /(2 * epso
* epsr[i][j][k] * By_kz + By_sigmaz * dt);

 //C1Hy,C2Hy,C3Hy

C2Hy[i][j][k] = (2 * epso * epsr[i][j][k] * Hy_ky +
Hy_sigmay * dt)/((2 * epso * epsr[i][j][k] * Hy_kx +
Hy_sigmax * dt)* muo);

C3Hy[i][j][k] = (2 * epso * epsr[i][j][k] * Hy_ky -
Hy_sigmay * dt)/((2 * epso * epsr[i][j][k] * Hy_kx +
Hy_sigmax * dt)* muo);

C1Hy[i][j][k] = (2 * epso * epsr[i][j][k] * Hy_kx -
Hy_sigmax * dt)/(2* epso * epsr[i][j][k] * Hy_kx +
Hy_sigmax * dt);

 }
 }
 }

 //C1Bz,C2Bz,C1Hz,C2Hz,C3Hz
 for(i = 0;i < XCELLS;i++)
 {
 for(int j = 0;j < YCELLS;j++)
 {
 for(int k = 0;k < ZCELLS;k++)
 {
 Bz_kx = 1;
 Bz_sigmax = sigma[i][j][k];
 Hz_kz = 1;
 Hz_sigmaz = sigma[i][j][k];
 Hz_ky = 1;
 Hz_sigmay = sigma[i][j][k];

 //Bz_kx,Bz_sigmax
 if(i < PL)
 {
 Bz_kx = pow(g,PL - i - 0.5);
 Bz_sigmax = sigmao * Bz_kx;
 }
 else if(i >= PL + PSX)

 {
 Bz_kx = pow(g,i - PL - PSX + 0.5);
 Bz_sigmax = sigmao * Bz_kx;
 }

 //Hz_kz,Hz_sigmaz
 if(k < PL)
 {
 Hz_kz = pow(g,PL - k);
 Hz_sigmaz = sigmao * Hz_kz;
 }
 else if(k >= PL + PSZ)
 {
 Hz_kz = pow(g,k - PL - PSZ);
 Hz_sigmaz = sigmao * Hz_kz;
 }

 //Hz_ky,Hz_sigmay
 if(j < PL)
 {
 Hz_ky = pow(g,PL - j - 0.5);
 Hz_sigmay = sigmao * Hz_ky;
 }
 else if(j >= PL + PSY)
 {
 Hz_ky = pow(g,j - PL - PSY + 0.5);
 Hz_sigmay = sigmao * Hz_ky;
 }
 //}

 //C1Bz,C2Bz

C1Bz[i][j][k] = (2 * epso * epsr[i][j][k] * Bz_kx -
Bz_sigmax * dt)/(2 * epso * epsr[i][j][k] * Bz_kx +
Bz_sigmax * dt);

C2Bz[i][j][k] = (2 * epso * epsr[i][j][k] * dt) /(2 * epso
* epsr[i][j][k] * Bz_kx + Bz_sigmax * dt);

 //C1Hz,C2Hz,C3Hz

C2Hz[i][j][k] = (2 * epso * epsr[i][j][k] * Hz_kz +
Hz_sigmaz * dt)/((2 * epso * epsr[i][j][k] * Hz_ky +
Hz_sigmay * dt)* muo);

C3Hz[i][j][k] = (2 * epso * epsr[i][j][k] * Hz_kz -
Hz_sigmaz * dt)/((2 * epso * epsr[i][j][k] * Hz_ky +
Hz_sigmay * dt)* muo);

C1Hz[i][j][k] = (2 * epso * epsr[i][j][k] * Hz_ky -
Hz_sigmay * dt)/(2* epso * epsr[i][j][k] * Hz_ky +
Hz_sigmay * dt);

 }
 }
 }
}

void CreateAllMatrices()
{
 //Create the parameter matrices
 CreateMatrix(epsr, XCELLS,YCELLS,ZCELLS);
 CreateMatrix(sigma,XCELLS,YCELLS,ZCELLS);

 //Field matrices
 CreateMatrix(Dx,XCELLS,YCELLS + 1,ZCELLS + 1);
 CreateMatrix(Dy,XCELLS + 1,YCELLS,ZCELLS + 1);
 CreateMatrix(Dz,XCELLS + 1,YCELLS + 1,ZCELLS);

 CreateMatrix(Ex,XCELLS,YCELLS + 1,ZCELLS + 1);
 CreateMatrix(Ey,XCELLS + 1,YCELLS,ZCELLS + 1);
 CreateMatrix(Ez,XCELLS + 1,YCELLS + 1,ZCELLS);

 CreateMatrix(Bx,XCELLS,YCELLS,ZCELLS);
 CreateMatrix(By,XCELLS,YCELLS,ZCELLS);
 CreateMatrix(Bz,XCELLS,YCELLS,ZCELLS);

 CreateMatrix(Hx,XCELLS,YCELLS,ZCELLS);
 CreateMatrix(Hy,XCELLS,YCELLS,ZCELLS);
 CreateMatrix(Hz,XCELLS,YCELLS,ZCELLS);

 //Create the update eqn constant matrices
 CreateMatrix(C1Dx,XCELLS,YCELLS + 1,ZCELLS + 1);
 CreateMatrix(C2Dx,XCELLS,YCELLS + 1,ZCELLS + 1);
 CreateMatrix(C1Dy,XCELLS + 1,YCELLS,ZCELLS + 1);
 CreateMatrix(C2Dy,XCELLS + 1,YCELLS,ZCELLS + 1);
 CreateMatrix(C1Dz,XCELLS + 1,YCELLS + 1,ZCELLS);
 CreateMatrix(C2Dz,XCELLS + 1,YCELLS + 1,ZCELLS);

 CreateMatrix(C1Bx,XCELLS,YCELLS,ZCELLS);
 CreateMatrix(C2Bx,XCELLS,YCELLS,ZCELLS);
 CreateMatrix(C1By,XCELLS,YCELLS,ZCELLS);
 CreateMatrix(C2By,XCELLS,YCELLS,ZCELLS);
 CreateMatrix(C1Bz,XCELLS,YCELLS,ZCELLS);
 CreateMatrix(C2Bz,XCELLS,YCELLS,ZCELLS);

 CreateMatrix(C1Ex,XCELLS,YCELLS + 1,ZCELLS + 1);
 CreateMatrix(C2Ex,XCELLS,YCELLS + 1,ZCELLS + 1);
 CreateMatrix(C3Ex,XCELLS,YCELLS + 1,ZCELLS + 1);
 CreateMatrix(C1Ey,XCELLS + 1,YCELLS,ZCELLS + 1);
 CreateMatrix(C2Ey,XCELLS + 1,YCELLS,ZCELLS + 1);
 CreateMatrix(C3Ey,XCELLS + 1,YCELLS,ZCELLS + 1);
 CreateMatrix(C1Ez,XCELLS + 1,YCELLS + 1,ZCELLS);
 CreateMatrix(C2Ez,XCELLS + 1,YCELLS + 1,ZCELLS);
 CreateMatrix(C3Ez,XCELLS + 1,YCELLS + 1,ZCELLS);

 CreateMatrix(C1Hx,XCELLS,YCELLS,ZCELLS);
 CreateMatrix(C2Hx,XCELLS,YCELLS,ZCELLS);
 CreateMatrix(C3Hx,XCELLS,YCELLS,ZCELLS);
 CreateMatrix(C1Hy,XCELLS,YCELLS,ZCELLS);
 CreateMatrix(C2Hy,XCELLS,YCELLS,ZCELLS);
 CreateMatrix(C3Hy,XCELLS,YCELLS,ZCELLS);
 CreateMatrix(C1Hz,XCELLS,YCELLS,ZCELLS);
 CreateMatrix(C2Hz,XCELLS,YCELLS,ZCELLS);
 CreateMatrix(C3Hz,XCELLS,YCELLS,ZCELLS);
}

void DeleteAllMatrices()
{
 //Delete the constitute parameter matrices
 DeleteMatrix(epsr ,XCELLS,YCELLS,ZCELLS);
 DeleteMatrix(sigma,XCELLS,YCELLS,ZCELLS);

 //Delete the field component matrices
 DeleteMatrix(Dx,XCELLS,YCELLS + 1,ZCELLS + 1);
 DeleteMatrix(Dy,XCELLS + 1,YCELLS,ZCELLS + 1);

 DeleteMatrix(Dz,XCELLS + 1,YCELLS + 1,ZCELLS);

 DeleteMatrix(Ex,XCELLS,YCELLS + 1,ZCELLS + 1);
 DeleteMatrix(Ey,XCELLS + 1,YCELLS,ZCELLS + 1);
 DeleteMatrix(Ez,XCELLS + 1,YCELLS + 1,ZCELLS);

 DeleteMatrix(Bx,XCELLS,YCELLS,ZCELLS);
 DeleteMatrix(By,XCELLS,YCELLS,ZCELLS);
 DeleteMatrix(Bz,XCELLS,YCELLS,ZCELLS);

 DeleteMatrix(Hx,XCELLS,YCELLS,ZCELLS);
 DeleteMatrix(Hy,XCELLS,YCELLS,ZCELLS);
 DeleteMatrix(Hz,XCELLS,YCELLS,ZCELLS);

 //Delete the update eqn constant matrices
 DeleteMatrix(C1Dx,XCELLS,YCELLS + 1,ZCELLS + 1);
 DeleteMatrix(C2Dx,XCELLS,YCELLS + 1,ZCELLS + 1);
 DeleteMatrix(C1Dy,XCELLS + 1,YCELLS,ZCELLS + 1);
 DeleteMatrix(C2Dy,XCELLS + 1,YCELLS,ZCELLS + 1);
 DeleteMatrix(C1Dz,XCELLS + 1,YCELLS + 1,ZCELLS);
 DeleteMatrix(C2Dz,XCELLS + 1,YCELLS + 1,ZCELLS);

 DeleteMatrix(C1Bx,XCELLS,YCELLS,ZCELLS);
 DeleteMatrix(C2Bx,XCELLS,YCELLS,ZCELLS);
 DeleteMatrix(C1By,XCELLS,YCELLS,ZCELLS);
 DeleteMatrix(C2By,XCELLS,YCELLS,ZCELLS);
 DeleteMatrix(C1Bz,XCELLS,YCELLS,ZCELLS);
 DeleteMatrix(C2Bz,XCELLS,YCELLS,ZCELLS);

 DeleteMatrix(C1Ex,XCELLS,YCELLS + 1,ZCELLS + 1);
 DeleteMatrix(C2Ex,XCELLS,YCELLS + 1,ZCELLS + 1);
 DeleteMatrix(C3Ex,XCELLS,YCELLS + 1,ZCELLS + 1);
 DeleteMatrix(C1Ey,XCELLS + 1,YCELLS,ZCELLS + 1);
 DeleteMatrix(C2Ey,XCELLS + 1,YCELLS,ZCELLS + 1);
 DeleteMatrix(C3Ey,XCELLS + 1,YCELLS,ZCELLS + 1);
 DeleteMatrix(C1Ez,XCELLS + 1,YCELLS + 1,ZCELLS);
 DeleteMatrix(C2Ez,XCELLS + 1,YCELLS + 1,ZCELLS);
 DeleteMatrix(C3Ez,XCELLS + 1,YCELLS + 1,ZCELLS);

 DeleteMatrix(C1Hx,XCELLS,YCELLS,ZCELLS);
 DeleteMatrix(C2Hx,XCELLS,YCELLS,ZCELLS);
 DeleteMatrix(C3Hx,XCELLS,YCELLS,ZCELLS);
 DeleteMatrix(C1Hy,XCELLS,YCELLS,ZCELLS);
 DeleteMatrix(C2Hy,XCELLS,YCELLS,ZCELLS);
 DeleteMatrix(C3Hy,XCELLS,YCELLS,ZCELLS);
 DeleteMatrix(C1Hz,XCELLS,YCELLS,ZCELLS);
 DeleteMatrix(C2Hz,XCELLS,YCELLS,ZCELLS);
 DeleteMatrix(C3Hz,XCELLS,YCELLS,ZCELLS);
}

//Create 3 dimensional matrix of dimx X dimy X dimz
//All elements are set to 0.0 as default
void CreateMatrix(MatPtr& mat,int dimx,int dimy,int dimz)
{
 mat = new double**[dimx];
 for(int i = 0; i < dimx; i++)
 {
 mat[i] = new double*[dimy];
 for(int j = 0;j < dimy; j++)
 {
 mat[i][j] = new double[dimz];
 for(int k = 0;k < dimz; k++)

 {
 mat[i][j][k] = 0.0;
 }
 }
 }
}

//Delete the 3 D matrix. Free the memory
void DeleteMatrix(MatPtr mat,int dimx,int dimy,int dimz)
{
 for(int i = 0;i < dimx;i++)
 {
 for(int j = 0;j<dimy;j++)
 {
 free(mat[i][j]);
 }
 free(mat[i]);
 }
 free(mat);
}

Appendix III : UPML experiments

Gaussian source at one end and Hx is sampled near the other end (near the UPML at the other
end). The figures show the incident Gaussian and the reflection from the UPML – problem space
boundary for varying values of UPML parameters.

-0.0001

-0.00005

0

0.00005

0.0001

0.00015

0.0002

0.00025

0 200 400 600 800 1000 1200 1400 1600 1800

Series1

-0.0001

-0.00005

0

0.00005

0.0001

0.00015

0.0002

0.00025

0 200 400 600 800 1000 1200 1400 1600 1800

Series1

-0.0001

-0.00005

0

0.00005

0.0001

0.00015

0.0002

0.00025

0 200 400 600 800 1000 1200 1400 1600

Series1

𝑷𝑷𝑷𝑷𝑷𝑷 𝒍𝒍𝒍𝒍𝒚𝒚𝒍𝒍𝒍𝒍𝒍𝒍 = 𝟏𝟏𝟏𝟏

𝒈𝒈 = 𝟏𝟏.𝟒𝟒,𝝈𝝈𝒐𝒐 = 𝟎𝟎.𝟎𝟎𝟏𝟏

𝑷𝑷𝑷𝑷𝑷𝑷 𝒍𝒍𝒍𝒍𝒚𝒚𝒍𝒍𝒍𝒍𝒍𝒍 = 𝟏𝟏𝟏𝟏

𝒈𝒈 = 𝟏𝟏.𝟒𝟒,𝝈𝝈𝒐𝒐 = 𝟎𝟎.𝟏𝟏

𝑷𝑷𝑷𝑷𝑷𝑷 𝒍𝒍𝒍𝒍𝒚𝒚𝒍𝒍𝒍𝒍𝒍𝒍 = 𝟏𝟏𝟏𝟏

𝒈𝒈 = 𝟏𝟏.𝟒𝟒,𝝈𝝈𝒐𝒐 = 𝟎𝟎.𝟓𝟓

Appendix IV : MATLAB code to evaluate 𝑺𝑺𝟏𝟏𝟏𝟏 from simulation results
%Total -> Simulation data from the microstrip patch simulation
%Incident -> Simulation data from the incident wave simulation
%Size of Total and Incident is 4000
dt = 0.265 / 6e8;
Ref = Total - Incident;

%Zero padding to increase frequency resolution
Incident = [Incident zeros(1,46000)];
Ref = [Ref zeros(1,46000)];

reffft = fft(ref);
incfft = fft(Incident);

S11 = reffft ./ incfft;

k = 0 : 450;
plot(k/(50000*dt*1e9),10*log10(abs(S11(k + 1))));
xlabel('Frequency (GHz)');
ylabel('S11 (dB)');

